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Abstract

This paper presents the results of computing the circumradius formula for cyclic octagons given by
the lengths of the sides. Continuing with the author’s recent paper in 2018, we have finally succeeded
in computing all the coefficients of the octagon formula, which has 845,027 terms in the form of
elementary symmetric polynomials. We have also fixed the explicit formula with 7,639,619,878 terms
in the expression by the lengths of sides. In this study, we newly adopted the method of numerical
interpolation, adding to the method of elimination by resultants, which has been applied in the author’s
preceding papers. We have found that modular algorithms based on the Chinese remainder theorem
are indispensable in our problems for solving systems of linear equations over the integers.

1 Introduction
In this study, we consider a classic problem in Euclidean geometry for cyclic polygons; that is,
polygons inscribed in a circle. In particular, we focus on computing the circumradius R of cyclic
n-gons given by the lengths of sides a1, a2, . . . , an. In a previous paper [5], the author discussed
the computation and analysis of explicit formulae for the circumradii of cyclic heptagons and oc-
tagons. However, in the octagon formula, 14 out of 39 coefficients remained uncompleted because
of the CPU time required for their computation. On the other hand, analysis of the formulae by an
investigation in terms of total degrees gave an insight into the form and structure of the octagon
formula. Hence, this study was conducted with the aim of obtaining the completely expanded form
of the octagon formula, applying both of the following two methods:

(1) continuation of the computation using resultants,
(2) another approach using numerical interpolation.
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Since Robbins [9] showed the “area formula (Heron polynomial)” for cyclic pentagons and
conjectured their degrees, the authors of several reports including [1] [2] [7] [8] [10] [11] have
studied this problem of the area. Some of them have also discussed the “circumradius formula,”
such as Robbins [9], Varfolomeev [11], Svrtan et al. [10], and Pech [8], but it seems that an explicit
formula for n > 5 has not been shown in these papers. As a related work, the author derived an
“integrated formula” for the relation of circumradius R and area S for n = 5, 6 in [4].

In contrast, this paper focuses on the “circumradius formula for cyclic octagons,” which has not
yet been explicitly computed. The computation itself is very simply realized by resultants. If we
already have the circumradius formulae Φ(+)

6 (ai; y) and Φ(+)
4 (ai; y) for a (convex) cyclic hexagon

and quadrilateral, we can directly compute the octagon formula using the following resultant:

Φ
(+)
8 (ai; y) := Resd(Φ(+)

6 (a1, a2, a3, a4, a5, d; y), Φ(+)
4 (d, a6, a7, a8; y))/y6, (1)

where y = R2. If we could compute the elimination by resultants efficiently, this equation would
be easily solved. However, the size of polynomials for n ≥ 7 becomes so huge that we need much
more consideration than for a straight computation.

To the best of our knowledge, there exist no reports in which the circumradii for n ≥ 6 are
explicitly computed, other than the author’s previous papers [3][5]. We note that some partial
results of this study have already been submitted by the author [6]. Now, however, we have finally
completed the computation of the octagon formula for the first time, both the expression by the
lengths ai of sides and their elementary symmetric polynomials si:

Φ
(+)
8 (ai; y) = P38y38 + · · · + P1y + P0 (7,639,619,878 terms, approx. 160 GB)

(y = R2, Pi ∈ Z[a1, . . . , a8]),
(2)

F(+)
8 (si; y) = P̃38y38 + · · · + P̃1y + P̃0 (845,027 terms, approx. 19 MB)

(y = R2, P̃i ∈ Z[s1, . . . , s7,
√

s8]),
(3)

where s1 = a2
1 + a2

2 + · · · + a2
8, s2 = a2

1a2
2 + · · ·, · · ·, s7 = a2

1 · · · a2
7 + · · ·,

√
s8 = a1 · · · a8. It seems

that these polynomials have not been shown elsewhere so far.

2 Robbins’ theorem and previously known results up to n = 7

For a given cyclic n-gon with the lengths of sides a1, . . . , an, we define its circumradius formula as
a polynomial Φn(a1, . . . , an; R2) where all the possible circumradii R are contained as its roots.

The degrees of defining polynomials Φn(ai; y), where y = R2, is given by the following Rob-
bins’ conjecture [9], which was proved by Fedorchuk and Pak [1]. Let

km :=
2m + 1

2

 2m

m

 − 22m−1 =

m−1∑
j=0

(m − j)

 2m + 1
j

 ; (4)

that is, let ki := 1, 7, 38, 187, 874, . . . (i = 1, 2, 3, 4, . . .). Then,

• the degree in y of Φ2m+1(ai; y) is km, and
• the degree in y of Φ(±)

2m+2(ai; y) is 2km, where Φ(±)
2m+2 is factored into the product of two polyno-

mials, Φ(+)
2m+2 and Φ(−)

2m+2, with each degree km.

In the following subsections, we summarize the previously known results for n = 3, . . . , 7 according
to the author’s previous paper [5].
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2.1 Circumradius of a triangle (n = 3)
Every triangle with side lengths a1, a2, and a3 has a circumcircle, and its radius R is given by the
classical formula of Heron. Converting it into a polynomial expression, and letting y := R2, we
obtain the defining polynomial of y for a triangle as

Φ3(a1, a2, a3; y) :=
(
a4

1 + a4
2 + a4

3 − 2(a2
1a2

2 + a2
2a2

3 + a2
3a2

1)
)

y + a2
1a2

2a2
3. (5)

Using elementary symmetric polynomials in a2
i , we rewrite the above result as

F3(s1, s2, s3; y) := (s2
1 − 4s2)y + s3, (6)

where s1 = a2
1 + a2

2 + a2
3, s2 = a2

1a2
2 + a2

2a2
3 + a2

3a2
1, and s3 = a2

1a2
2a2

3.

2.2 Circumradius of a cyclic quadrilateral (n = 4)
We have the classic result of Brahmagupta for a “convex” cyclic quadrilateral, and from its poly-
nomial expression, we define the circumradius formula as

Φ
(+)
4 (ai; y) :=

(
(a4

1 + a4
2 + a4

3 + a4
4) − 2(a2

1a2
2 + a2

1a2
3 + a2

1a2
4 + a2

2a2
3 + a2

2a2
4 + a2

3a2
4) − 8a1a2a3a4

)
y

+ (a2
1a2

2a2
3 + a2

1a2
2a2

4 + a2
1a2

3a2
4 + a2

2a2
3a2

4) + (a2
1 + a2

2 + a2
3 + a2

4)a1a2a3a4.

(7)
Using elementary symmetric polynomials in a2

i , we rewrite the above result as

F(+)
4 (si; y) := (s2

1 − 4s2 − 8
√

s4)y + (s3 + s1
√

s4), (8)

where s1 = a2
1 + a2

2 + a2
3 + a2

4, s2 = a2
1a2

2 + · · ·, s3 = a2
1a2

2a2
3 + · · ·, and

√
s4 = a1a2a3a4, which is

used as an auxiliary to s4 = a2
1a2

2a2
3a2

4.
We should note that, letting a4 := −a4 or

√
s4 := −√s4, we obtain the other polynomials for

“non-convex” quadrilaterals:

Φ
(−)
4 (a1, a2, a3, a4; y) := Φ(+)

4 (a1, a2, a3,−a4; y), (9)

F(−)
4 (si; y) := (s2

1 − 4s2 + 8
√

s4)y + (s3 − s1
√

s4). (10)

Introducing the notion of “crossing parity” ε [9][2], where ε is 0 for a triangle, +1 for a convex
quadrilateral, and −1 for a non-convex quadrilateral, the circumradius formulae in y = R2 for
n = 3, 4 in Eqs. (6), (8), and (10) are written in the following unified form:

F3,4(si; y) := (s2
1 − 4s2 − ε · 8

√
s4)y + (s3 + ε · s1

√
s4). (11)

2.3 Circumradius of a cyclic pentagon (n = 5)
We divide a cyclic pentagon with side lengths {a1, . . . , a5} by a diagonal of length d, into a cyclic
quadrilateral of sides {a1, a2, a3, d} and a triangle of sides {d, a4, a5}.

Since this quadrilateral and triangle have circumradius R in common, the cyclic pentagon for-
mula should be obtained if the diagonal d is eliminated from the formulae of Brahmagupta and
Heron. Specifically, we need to compute the following resultant:

Φ5(ai; y) := Resd(Φ(+)
4 (a1, a2, a3, d; y), Φ3(d, a4, a5; y))/y

= A7y7 + A6y6 + A5y5 + A4y4 + A3y3 + A2y2 + A1y + A0 (2,922 terms)(
y = R2, Ai ∈ Z[a2

1, . . . , a
2
5]
)
.

(12)



letter-moritsugu.tex : 2019/11/11 11:36

Bulletin of JSSAC Vol. 25, No. 2, 2019 5

It should also be helpful to reduce the expression for the pentagon case, using the elementary
symmetric polynomials s1 = a2

1 + · · · + a2
5, . . ., s5 = a2

1 · · · a2
5:

F5(si; y) = Ã7y7 + Ã6y6 + · · · + Ã1y + Ã0 (81 terms)
(
Ãi ∈ Z[s1, . . . , s5]

)
. (13)

2.4 Circumradius of a cyclic hexagon (n = 6)
Dividing a (convex) cyclic hexagon into two (convex) quadrilaterals, we compute the defining
polynomial for the circumradius by resultants:

Φ
(+)
6 (ai; y) := Resd(Φ(+)

4 (a1, a2, a3, d; y), Φ(+)
4 (d, a4, a5, a6; y))/y

= B7y7 + B6y6 + · · · + B1y + B0 (19,449 terms, approx. 580 KB)(
y = R2, Bi ∈ Z[a1, . . . , a6]

)
.

(14)

Using the elementary symmetric polynomials s1 = a2
1 + · · · + a2

6, . . ., s5 = a2
1a2

2a2
3a2

4a2
5 + · · · ,√

s6 = a1 · · · a6, we rewrite Eq. (14) into a simpler form:

F(+)
6 (si; y) := B̃7y7 + B̃6y6 + · · · + B̃1y + B̃0 (224 terms)

(
B̃i ∈ Z[s1, . . . , s5,

√
s6]
)
. (15)

The counterparts for hexagons of the other group without a convex one are obtained by simple
substitution from Robbins’ theorem:

Φ
(−)
6 (a1, . . . , a5, a6; y) := Φ(+)

6 (a1, . . . , a5,−a6; y), (16)

F(−)
6 (s1, . . . , s5,

√
s6; y) := F(+)

6 (s1, . . . , s5,−
√

s6; y). (17)

Since we also have the relation F5(s1, . . . , s5; y) = F(+)
6 (s1, . . . , s5, 0; y), we can express F5,

F(+)
6 , and F(−)

6 uniformly as polynomial F5,6(s1, . . . , s5, ε
√

s6; y) similarly to Eq. (11), using the
crossing parity ε.

2.5 Circumradius of a cyclic heptagon (n = 7)
In our previous paper [5], after comparative experiments, we concluded that the following method
of resultant computation seems to be quite practical from the viewpoint of CPU time and mem-
ory consumption. In this formulation, we divide a cyclic heptagon into a pentagon and a convex
quadrilateral by another diagonal d, and compute the resultant into the expanded form:

Φ7(ai; y) := Resd(Φ5(a1, a2, a3, a4, d; y), Φ(+)
4 (d, a5, a6, a7; y))/y6

= C38y38 + · · · +C1y +C0 (337,550,051 terms, approx. 7,407 MB)(
y = R2, Ci ∈ Z[a2

1, . . . , a
2
7]
)
.

(18)

We also succeeded in converting Φ7(ai; y) into the form of elementary symmetric polynomials:

F7(si; y) = C̃38y38 + · · · + C̃1y + C̃0 (199,695 terms)
(
C̃i ∈ Z[s1, . . . , s7]

)
. (19)

For reference, the area formula (n = 7, 8) reported by Maley et al. [2] has the following form:

G7(si; x) = x38 + M̃′37x37 + · · · + M̃′1x + M̃′0 (955,641 terms)(
x = (4S )2, M̃′i ∈ Z[s1, . . . , s7]

)
,

G(+)
8 (si; x) = x38 + M̃37x37 + · · · + M̃1x + M̃0 (3,248,266 terms)(

x = (4S )2, M̃i ∈ Z[s1, . . . , s7,
√

s8]
)
,

(20)

where S is the area of the polygon and we have M̃′j = M̃ j |√s8=0 (0 ≤ j ≤ 37).
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3 Circumradius of a cyclic octagon (n = 8): Method 1
In this study, the Maple 2016 and 2017 computer algebra systems were used in the following two
environments. Since the computations were not carried out in a unified environment, the data for
CPU times described below are only for reference and are not necessarily comparable.

Machine A Windows, Xeon (8 core, 2.93 GHz) ×2, 192 GB RAM,
Machine B Linux, Xeon (8 core, 2.6 GHz) ×2, 256 GB RAM.

3.1 Method of expansion of resultant
We review the algorithm described in the author’s previous paper [5]. Dividing an octagon into a
(convex) hexagon and a (convex) quadrilateral, we compute the resultant in Eq. (1) stepwise.

First, we collect the coefficients of the two polynomials in d:
Φ

(+)
6 (a1, a2, a3, a4, a5, d; y) = y7d16 − a1a2a3a4a5y5d15 + u14d14 + · · · + u1d + u0

(u j ∈ Z[a1, . . . , a5, y]),
Φ

(+)
4 (d, a6, a7, a8; y) = yd4 + a6a7a8d3 + ( · · · )d2 + ( · · · )d + ( · · · ) (19 terms),

(21)
where Φ(+)

6 originally has 19,449 terms.
Second, we compute the resultant of these polynomials, regarding u0, . . . , u14 as independent

new variables. Then, we obtain the intermediate form of the resultant polynomial:

R(u0, u1, . . . , u14, a1, . . . , a8; y) := Resd(Φ(+)
6 ,Φ

(+)
4 ). (22)

Third, we substitute the original coefficient u j(a1, . . . , a5, y) in Φ(+)
6 into each u j, and obtain the

following polynomial:
R̄(a1, . . . , a8; y) = P̄38y44 + · · · + P̄0y6. (23)

At this point, the P̄i’s have not yet been expanded or simplified and it is difficult to observe their
explicit expressions. Finally, if we succeed in expanding each coefficient P̄i, we obtain the circum-
radius formula Φ(+)

8 (ai; y) in Eq. (1). The current status of computation, updated from the previous
paper [5], is expressed as follows:

Φ
(+)
8 (ai; y) = P38y38 + · · · + P28y28 +

(
P̄27y27 + · · · + P̄15y15

)
+ P14y14 + · · · + P0, (24)

where coefficients P27, . . . , P15 with much larger sizes have not yet been obtained in expanded
form. A summary of the number of terms is shown in Table 1, together with the results obtained
by another method described later.

The expansion of each coefficient P̄i needs a large memory allocation and often fails. In order
to avoid memory overflow, we need to divide the procedure into a number of smaller problems,
which requires much more CPU time.

For example, the size of coefficient P14 is approximately 8,834 MB in Maple file format (*.m).
As a result, the expansion of P̄14 required 1,004 days of CPU time in total (with 178 jobs, on
Machine B described above), which is the latest result since the previous paper [5]. Hence, it is
unlikely that the remaining computations will be completed in the near future.

When we obtained the coefficient Pi in expanded form, we converted it into an expression in
the form of elementary symmetric polynomials, applying the algorithm proposed in [5]. Currently,
we have obtained the explicit form of coefficients except P̃27, . . . , P̃15, as follows:

F(+)
8 (si; y) = P̃38y38 + · · · + P̃28y28 +

(
P̄27y27 + · · · + P̄15y15

)
+ P̃14y14 + · · · + P̃0. (25)
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3.2 Analysis of the forms of circumradius formulae Φ(+)
8 (ai; y) and F(+)

8 (ai; y)

In the study described in the author’s previous paper [5], we investigated the shapes of circum-
radius formulae by focusing on the degrees in each coefficient, and found the regularity of their
distribution.

First, we introduce the notion of the total degree of a power product in a2
i ’s:

t-deg
(
a2m1

1 a2m2
2 · · · a2mn

n

)
:= m1 + m2 + · · · + mn. (26)

Under this definition, the total degree of the form of elementary symmetric polynomials with n
variables is given by

t-deg
(
sm1

1 sm2
2 · · · s

mn
n

)
= m1 + 2m2 + · · · + nmn, (27)

noting that we define, if n is even, t-deg(
√

sn) = n/2, where
√

sn = a1a2 · · · an.
Analyzing the octagon formulae Φ(+)

8 (ai; y) and F(+)
8 (ai; y) in Eqs. (24) and (25), we observed

the number of terms and the total degrees of the coefficients as shown in Table 1.
The regularity of the distribution of degrees makes it possible to readily estimate the forms of

P̃i (i = 15, . . . , 27), the expanded forms of which we have not yet obtained. For example, P̃20
should have t-deg 50 and degree 12 in

√
s8. Therefore, it should have the following form:

P̃20 = u0(s1, . . . , s7) + u1(s1, . . . , s7)
√

s8 + · · · + u12(s1, . . . , s7)
√

s8
12, (28)

where u j is homogeneous with t-deg(u j) = 50 − 4 j ( j = 0, . . . , 12). In particular, u0(s1, . . . , s7)
should be identical with coefficient C̃20 of the heptagon formula F7(si; y) in Eq. (19).

Based on these observations, we have developed a new approach using numerical interpolation.

4 Circumradius of a cyclic octagon (n = 8): Method 2

4.1 Method of numerical interpolation
We consider directly computing each coefficient polynomial P̃d(si) of yd (0 ≤ d ≤ 38) in Eq. (25),
in the form of elementary symmetric polynomials.

First, we assume that we have already obtained the circumradius formulae for cyclic quadrilat-
erals and hexagons. When randomly chosen integers α1, . . . , α8 are substituted into Eqs. (7) and
(14), we can easily compute the resultant

Φ
(+)
8 (αi; y) := Resd(Φ(+)

6 (α1, . . . , α5, d; y), Φ(+)
4 (d, α6, α7, α8; y))/y6

= w38(αi)y38 + · · · + wd(αi)yd + · · · + w0(αi).
(29)

Next, we compute each coefficient polynomial P̃d(si) in Eq. (25) using the following procedure.

(1) We search for all the 8-tuples of integers (e1, . . . , e7, e8) in the range of 0 ≤ e j ≤ (70 − d)/ j, so
that e1 + 2e2 · · · + 7e7 + 4e8 = 70 − d is satisfied. We let the number of found 8-tuples be N.

(2) We generate N monomials mk = s
e(k)

1
1 · · · s

e(k)
7

7
√

s8
e(k)

8 (k = 1, . . . ,N). We note that mk is also a
polynomial in ai through the relations s1 = a2

1 + · · · + a2
8, . . .,

√
s8 = a1 · · · a8.

(3) We let f (ai) = c1m1 + · · · + cNmN using indeterminate coefficients c1, . . . , cN .
(4) We choose a set of random integers (α1, . . . , α8) and substitute them into f (ai). On the other

hand, we compute wd(αi) according to Eq. (29). Then, we have a linear equation over the
integers f (αi) = wd(αi), with indeterminate c1, . . . , cN .
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(5) We choose another set of random integers (α′1, . . . , α
′
8), and similarly compute a linear equation

f (α′i) = wd(α′i). If we choose “linearly independent” N sets of 8-tuples, we have a system of
linear equations over the integers Ax = b with N indeterminate.

(6) Solving Ax = b and using its solution x = [γ1, . . . , γN]T , we obtain the coefficient polynomial
P̃d(si) = γ1m1 + · · · + γNmN .

In our study, using the “nextprime” Maple function, we generated the sequence of prime num-
bers p1 = 101, p2 = 103, . . . and let the “linearly independent” set of lengths of sides be

(p1, p2, . . . , p8), (p2, p3, . . . , p9), . . . , (pN , pN+1, . . . , pN+7). (30)

We confirmed that all the coefficient matrix A were not singular throughout the computation.
We attempted computations by implementing the above-mentioned procedure. It was easy to

solve the system of linear equations Ax = b when the matrix size N was small. However, it seems
impossible to compute all the coefficients P̃27, . . . , P̃15, which have not been obtained in Eq. (25),
because the size of the matrix grows sequentially in this order. Therefore, we have considered the
following three devices.

4.2 Device 1: Using the already obtained results F7(si; y)

We note that F7(si; y) in Eq. (19) is obtained by substituting
√

s8 := 0 to F(+)
8 (si; y) in Eq. (25). In

the following, we illustrate the procedure using the example of case d = 20, in order to show the
effect of the device.

The coefficient polynomial P̃20 should have the form shown in Eq. (28), and u0(s1, . . . , s7) have
already been computed as the coefficient of y20 in F7(si; y), which has 9, 577 terms. Therefore, we
have only to compute the other monomials with positive degrees in

√
s8.

(1) We search for all the 8-tuples of integers (e1, . . . , e7, e8) in the range of

0 ≤ e1 ≤ 50/1, . . . , 0 ≤ e7 ≤ 50/7, 1 ≤ e8 ≤ 50/4, (31)

so that e1+2e2 · · ·+7e7+4e8 = 50 is satisfied. We let the number of found sets be Ñ := 32, 255,
whereas the number of original candidates was N = 50, 393.

(2) Generating Ñ monomials mk = s
e(k)

1
1 · · · s

e(k)
7

7
√

s8
e(k)

8 (k = 1, . . . , Ñ), we let f̃ (ai) = c1m1 + · · · +
cÑmÑ using indeterminate coefficients c1, . . . , cÑ .

(3) We choose a set of random integers (α1, . . . , α8) and substitute them into f̃ (ai). On the other
hand, we compute w20(αi) according to Eq. (29). Moreover, we substitute αi, . . . , α7 into u0(si),
letting α8 := 0. Then, we have a linear equation over the integers f̃ (αi) = w20(αi) − u0(αi) with
indeterminate c1, . . . , cÑ .

(4) If we choose “linearly independent” Ñ sets of 8-tuples, we have a system of linear equations
over the integers Ax = b with Ñ indeterminate.

(5) Solving Ax = b and using its solution x = [γ1, . . . , γÑ]T , we obtain the coefficient polynomial
P̃20(si) = u0 + γ1m1 + · · · + γÑmÑ .

4.3 Device 2: Excluding unnecessary monomials by preprocessing
Although the matrix size of the system of linear equations Ax = b is reduced to Ñ = 32, 255 by the
device described above, we still found it difficult to solve them directly over the integers.

Therefore, we preprocessed the equation using modular arithmetic, to find the zero elements in
its solution vector x.
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(1) We solve the equation Ax = b over Zp and compute the solution:

x ≡ [. . . , ⋆, 0, ⋆, . . . , ⋆, 0, 0, . . .]T (mod p), (32)

where ⋆’s are non-zero elements and we let the number of them be N′. Although this step
is probabilistic, the result should be mostly true when the matrix A (mod p) turns out to be
regular. If it seems unsure, we should compute again using another prime number p′.

(2) The columns in matrix A corresponding to ⋆’s mean “necessary monomials.” Using these
columns, we extract a system of linear equations Ax = b with N′ indeterminate.

In the case of d = 20, the size of the matrix was reduced to N′ = 24, 713. Adding the 9, 577 terms
in the coefficient of y20 in F7(si; y), we can determine that the total number of monomials in the
coefficient of y20 in F(+)

8 (si; y) should be 34, 290.

4.4 Device 3: Solving systems of linear equations by modular algorithms
In the case of d = 20, the preprocess mentioned above gives a system of linear equations A′x′ = b′

with matrix size N′ = 24, 713. However, it still seems impossible to compute the solution x′
directly over the integers, because of the memory requirement.

Therefore, we applied modular algorithms, which are often used for various types of larger
sized problems over the integers, to reduce memory consumption.

(1) We solve the equation A′x′ = b′ with mod p j ( j = 1, 2, . . . , t), and obtain the solutions x′(1),
x′(2), . . ., x′(t). Then, using the Chinese remainder theorem, we reconstruct the solution x′ over
the integers. We apply Newton’s interpolation formula, adding modulo p j incrementally.

(2) We prepared another relation aT x = b using the other set of integers, to confirm the recovery
of the solution x over Z. Actually, the coefficients P̃38, . . . P̃25 needed three (t = 3) moduli, and
the coefficients P̃24, . . . P̃11 needed only two (t = 2) moduli for their recovery.

We took moduli among the prime numbers such that p j < 232 − 1. In the Maple computer algebra
system, they are efficiently processed using hardware operation over 64-bit integers. As a result,
we succeeded in computing the coefficient polynomials P̃38, . . . P̃11 by the method of numerical
interpolation. In comparison with the expansion of resultant, the computation of P̃14 required 62
days of CPU time in total, on Machine A described in section 3.

5 Concluding remarks
Applying two types of algorithms, we have completed the computation of circumradius formulae
for cyclic octagons Φ(+)

8 (ai; y) and F(+)
8 (si; y) in Eqs. (2) and (3), for the first time. A summary of

the shapes of the formulae and applied methods is shown in Table 1.

1. Expanding the resultant, we have succeeded in the computation of 26 coefficient polynomials
out of 39; that is, P̃38, . . . , P̃28 and P̃14, . . . , P̃0.

2. We have newly proposed an algorithm using numerical interpolation, and created three devices
to solve the huge system of linear equations. As a result, we have succeeded in the computation
of P̃38, . . . , P̃11. These results contain the 13 coefficient polynomials P̃27, . . . , P̃15, which are
extremely difficult to compute by the expansion of resultants.

3. We have obtained the explicit form of the circumradius formula for cyclic octagons with
845,027 terms in the expression using elementary symmetric polynomials. Expanding them
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conversely, we have found that the formula contains 7,639,619,878 terms in the expression by
lengths of sides.

We have confirmed the correctness of the result in the following two ways.

Check 1 If we consider the equilateral case, we have the following structure:

F(+)
8 (y) =

 235(2y − 1)28(3y − 1)8(2y2 − 4y + 1) (a1 = · · · = a8 = 1),
0 (a1 = · · · = a7 = 1, a8 = −1).

(33)

Check 2 We choose random prime numbers qi, independently from the moduli used in the modular
arithmetic, and compute the resultant Eq. (29) under the substitution. Next, we compare the
resultant with the circumradius formula F(+)

8 (si; y), when ai := qi are substituted.

In our future work, we need to improve the efficiency of the numerical interpolation method in order
to compute the remaining coefficients P̃10, . . . , P̃0. The difficulty lies in the increase of the matrix
size; for example, 84,714 for P̃11 but 235,516 for P̃0. Since these numbers contain “unnecessary
monomials,” we need to find some sharper criteria for the selection of candidate monomials.
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deg in y #terms of Φ(+)
8 t-deg #terms of F(+)

8 deg in
√

s8 Successful method(s)
0 5,554,128 70 918 16 Res†

1 13,298,304 69 1,870 16 Res
2 26,940,233 68 3,432 16 Res
3 48,012,824 67 5,732 16 Res
4 77,750,132 66 8,931 16 Res
5 114,947,440 65 12,670 16 Res
6 158,302,913 64 17,129 16 Res
7 204,390,480 63 21,592 15 Res
8 250,654,676 62 26,179 15 Res
9 293,931,056 61 30,200 15 Res

10 333,471,187 60 33,748 15 Res
11 367,872,280 59 36,404 14 Res, Intp‡

12 393,876,280 58 38,662 14 Res, Intp
13 410,700,024 57 40,052 14 Res, Intp
14 418,982,117 56 41,026 14 Res, Intp
15 419,436,472 55 41,052 13 Intp
16 412,150,144 54 40,569 13 Intp
17 397,702,264 53 39,512 13 Intp
18 377,625,563 52 38,060 13 Intp
19 353,461,816 51 36,276 12 Intp
20 326,710,952 50 34,290 12 Intp
21 298,537,136 49 32,206 12 Intp
22 270,096,177 48 30,102 12 Intp
23 242,272,136 47 27,972 11 Intp
24 215,706,304 46 25,859 11 Intp
25 190,757,400 45 23,791 11 Intp
26 167,575,955 44 21,791 11 Intp
27 146,251,128 43 18,825 10 Intp
28 126,825,848 42 17,976 10 Res, Intp
29 109,294,704 41 16,183 10 Res, Intp
30 93,610,141 40 14,513 10 Res, Intp
31 79,699,496 39 12,910 9 Res, Intp
32 67,463,040 38 11,436 9 Res, Intp
33 56,784,240 37 10,026 9 Res, Intp
34 47,533,327 36 8,743 9 Res, Intp
35 39,574,496 35 7,514 8 Res, Intp
36 32,771,272 34 6,385 8 Res, Intp
37 26,990,336 33 5,260 8 Res, Intp
38 22,105,457 32 4,231 8 Res, Intp

†: Method of resultant ‡: Method of numerical interpolation

Table 1: Each coefficient in the octagon formulae Φ(+)
8 (ai; y) and F(+)

8 (si; y)
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