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Abstract

The natural projection from the moduli space of polynomials of degree n is not surjective if n ≥ 4.
We give explicit parametric representation of the exceptional set when n = 4 and 5. And we describe
degeneration which occurs above the exceptional set when n = 4. Also we show that the preimage of
a point generally consists of (n − 2)! points, where (n − 2)! is the maximum when the preimage is a
finite set.

1 Known results
Let Polyn be the space of all polynomial maps of degree n:

p(z) = anzn + an−1zn−1 + · · · + a1z + a0, (a j ∈ C ( j = 1, · · · , n), an , 0).

Let A be the group of all affine transformations. We say that two maps p1, p2 ∈ Polyn are affine
conjugate, denoted by p1 ∼A p2, if there exist a g ∈ A with g ◦ p1 ◦ g−1 = p2. The moduli space of
polynomial maps degree n is the set of all affine conjugacy classes of elements in Polyn, which is
denoted by Mn.

For each f ∈ Polyn, let z1, z2, · · · , zn+1 be the fixed points of f and µ j the multipliers at z j;
µ j = f ′(z j) (1 ≤ j ≤ n + 1), we set zn+1 = ∞ and hence µn+1 = 0. The elementary symmetric
functions of µ j are

σn,1 = µ1 + µ2 + · · · + µn+1, · · · , σn,r =
∑

j1< j2<···< jr

µ j1µ j2 · · · µ jr , · · · ,

σn,n+1 = µ1µ2 · · · µn+1(= 0).
(1)

Note that these quantities are invariant under affine conjugacy.

∗masayo@nda.ac.jp

c© 2006 Japan Society for Symbolic and Algebraic Computation



4 数式処理第 12巻第 4号 2006

Next, the holomorphic index of a rational function f at a fixed point ζ ∈ C is defined to be the
complex number

ι( f , ζ) =
1

2πi

∫
C

dz
z − f (z)

where we integrate in a small loop C in the positive direction around ζ (see [5]). The following
facts are well known as Fatou’s index theorem:

• If the multiplier µ , 1, then ι( f , ζ) = 1
1−µ .

• For any polynomial map f which is not the identity map,

n∑
j=1

ι( f , z j) = 0. (2)

In particular, we obtain the following linear relation among the elementary symmetric functions
σn, j (1 ≤ j ≤ n + 1):

0 = σn,n+1 =

n−1∑
k=0

(−1)n−k−1(n − k)σn,k (3)

where we put σn,0 = 1. (See Theorem 1 in [4]).
Hence, we have a natural projection ΨPolyn

from a point in Mn to an (n−1)-tuple (σn,1, σn,2, · · ·,
σn,n−2, σn,n) ∈ Cn−1:

ΨPolyn
: Mn −→ Cn−1.

And in [2] we showed that ΨPolyn
is not surjective if n ≥ 4.

Theorem 1 ([2])
The exceptional set

E(n) = C \ ΨPolyn
(Mn)

is nonempty for every n ≥ 4.

To state the situation more precisely, we define the following subset.

Definition 2
Let Σ∗(n) (⊂ Cn−1) be the set of points (sn,1, · · · , sn,n−2, sn,n) such that the corresponding solutions
{m1,m2, · · · ,mn} of (1) with σn, j = sn, j for every j, where σn,n−1 is defined by (3), satisfies one of
the following conditions A, B, and C, where we set Ω = {1, · · · , n}.

Condition A

1. m j , 1 (∀ j ∈ Ω),

2.
∑

j∈Ω
1

1−m j
= 0, and

3. for any proper subset ω of Ω,
∑

j∈ω
1

1−m j
, 0.

Condition B Let Ω′ be the set {k ∈ Ω ; mk , 1} and N the cardinality of Ω′.

1. 1 ≤ N ≤ n − 2, and

2. for any subset ω′ of Ω′,
∑

j∈ω′
1

1−m j
, 0.

Condition C m j = 1 (∀ j ∈ Ω).
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Remark 3
The set Σ∗(n) is disjoint union of the set of points satisfying the conditions A, B, and C, which in
turn denoted by XA, XB, and XC , respectively.

Then Σ∗(n) is contained in the image of ΨPolyn
, i.e., Σ∗(n) ∩ E(n) = ∅.

Theorem 4 ([2])
For any point (sn,1, sn,2, · · · , sn,n−2, sn,n) in Σ∗(n), there exists a polynomial of degree n having n
values sn,1, sn,2, · · · , sn,n−2, sn,n−1, sn,n as the elementary symmetric functions of the multipliers at
the fixed points.

Also, we showed the following theorem.

Theorem 5 ([2])
There does not exist a polynomial of degree N with the following multipliers at the fixed points;

m, · · · ,m, n1 − m
n1 − 1︸               ︷︷               ︸

n1

, m, · · · ,m, n2 − m
n2 − 1︸               ︷︷               ︸

n2

, · · · ,m, · · · ,m, nk − m
nk − 1︸               ︷︷               ︸

nk

(m , 1, k ≥ 2), (4)

where n j ≥ 2 ( j = 1, 2, · · · , k) and N =
∑k

j=1 n j.

2 On the exceptional set
If n = 4, we can parameterize E(4) as follows.

Theorem 6 ([4])
The exceptional set E(4) is a punctured curve in C3, and the defining equation is given by:

(σ1, σ2, σ4) =
(
4, s,

(s − 4)2

4

)
, s ∈ C \ {6}. (5)

That is, none of quartic polynomials corresponds to the multipliers µ, µ, 2 − µ, 2 − µ (µ , 1).

Moreover the following theorem clarify degeneration of polynomials from dynamical view-
point when points in C3 tend to the exceptional set E(4) with real s in (5).

Theorem 7
Let D be a subset of Σ(4) = ΨPolyn

(Mn) defined by

D =
{

(4, s2, s4) | s2 < −
1
4

(s2
4 − 6s4 − 19), s4 <

(2 − s2)2

4

}
⊂ {4} × R2.

For any σ ∈ D, let pσ be an element in Poly3 corresponding to σ. Then we can construct two
polynomial-like maps (see [1]) (U,V, pσ) ≡ z2 + c and (Ũ, Ṽ , pσ) ≡ z2 + c̄ so that c and c̄ converge
to a common value c̃ ∈ R as σ tends to a point of E(4).

The limit value c̃ depends only on the landing point (4, s, (s−4)2

4 ) ∈ E(4) and is written as c̃ = s−4
8 .
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Figure 1: Figure 2: Figure 3: Figure 4:

Figure 1 shows Julia set of p(z) = z4 + 3.8199z2 + z + 3.775218 that corresponds to the point
(4,−1.7696160, 8.8480801) ∈ Σ(4). (−2 < <z, =z < 2.)

Figure 2 shows enlargement of Figure 1. (−0.2 < <z < 0.28, 1.137 < =z < 1.617.)
Figure 3 shows Julia set of corresponding quadratic-like map. (−0.2 < <z < 0.28, 1.137 <
=z < 1.617.)
Figure 4 shows Julia set of quadratic polynomial pc(z) = z2 + (−0.726 + 0.183i).

Proof From (5), E(4) is contained in the plane {(4, σ2, σ4)} � C2. On D, any corresponding
polynomial pσ has two attracting fixed points of multiplier µ, µ and the three critical points x0 ∈ R,
z0, z̄0 ∈ C\R. Dynamics of pσ are symmetric with respect to the real axis (see Figure 1). Hence we
can choose suitable topological disks V, Ṽ bounded by equipotential curves such that z0 ∈ V, z̄0 ∈ Ṽ
and V ∩ Ṽ = ∅. Then ( f (V),V, pσ) and ( f (Ṽ), Ṽ , pσ) are quadratic-like maps hybrid equivalent to
z2 + c and z2 + c respectively. If σ converges to a point (4, s, (s−4)2

4 ) ∈ E(4), two parameters c, c̄ are
converge to common value s−4

8 (see Figure 3 and 4).

Next, even when n = 5, we can give the explicit parametric representation of the exceptional
set E(5).

Theorem 8
The exceptional set E(5) is parameterized as follows:

(σ1, σ2, σ3, σ5)
=

(
s, −4s2+76s−190

9 , −2(s−8)(4s−5)(2s−7)
27 , (2s−13)(s−8)(2s−7)3

243

)
, (s ∈ C \ {5}).

Namely none of polynomials of degree five corresponds to the multipliers µ, µ, µ, 2 − µ, 3−µ
2

(µ , 1).

Proof For a monic and centered polynomial p(z) = z5 + c3z3 + c2z2 + c1z + c0, the four val-
ues σ5,1, σ5,2, σ5,3, σ5,5 are determined from c0, · · · , c3, which can be written down explicitly as
follows:

σ5,1 = 4c2
3 − 15c1 + 20,

σ5,2 = 4c4
3 − (36c1 − 52)c2

3 + 27c2
2c3 − 50c0c2 + 80c2

1 − 220c1 + 150,
σ5,3 = (−12c1 + 24)c4

3 + 4c2
2c3

3 +(40c0c2 + 88c2
1 − 284c1 + 220)c2

3 −((117c1 − 198)c2
2

+125c2
0)c3 + 27c4

2 + (300c0c1 − 450c0)c2 − 160c3
1 + 720c2

1 − 1050c1 + 500,
σ5,5 = 108c2

0c5
3 + ((−72c0c1 + 72c0)c2 + 16c3

1 − 48c2
1 + 36c1)c4

3 + (16c0c3
2 + (−4c2

1
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+8c1)c2
2 − 900c2

0c1 + 900c2
0)c3

3 + (825c2
0c2

2 + (560c0c2
1 − 1120c0c1 + 600c0)c2

−128c4
1 + 512c3

1 − 680c2
1 + 300c1)c2

3 − ((630c0c1 − 630c0)c3
2 −(144c3

1 − 432c2
1

+315c1)c2
2 + 3750c3

0c2 − 2000c2
0c2

1 + 4000c2
0c1 − 1875c2

0)c3 + 108c0c5
2 − (27c2

1

−54c1)c4
2 + (2250c2

0c1 − 2250c2
0)c2

2 − (1600c0c3
1 − 4800c0c2

1 + 4500c0c1

−1250c0)c2 + 256c5
1 − 1280c4

1 + 2400c3
1 − 2000c2

1 + 625c1 + 3125c4
0.

Hence, the defining equation of E(5) can be written as in the theorem.

3 Outside the exceptional set
Outside the exceptional set E(n), the preimage of a point can contain infinite number of points
in general. But if the preimage contains only a finite number of points, we can easily see that it
contains at most (n − 2)! points. Furthermore, we show the following theorem.

Theorem 9
For every σ in general position, Ψ−1

Polyn
(σ) consists of (n − 2)! points.

Proof By recalling the definition of the set XA, the assertion follows from Bézout’s theorem.
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