

The exceptional set for the projection from the moduli space of polynomials

Masayo FUJIMURA*

Department of Mathematics, National Defense Academy

(Received 2006/08/07)

Abstract

The natural projection from the moduli space of polynomials of degree *n* is not surjective if $n \ge 4$. We give explicit parametric representation of the exceptional set when n = 4 and 5. And we describe degeneration which occurs above the exceptional set when n = 4. Also we show that the preimage of a point generally consists of (n - 2)! points, where (n - 2)! is the maximum when the preimage is a finite set.

1 Known results

Let $Poly_n$ be the space of all polynomial maps of degree n:

 $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, \ (a_j \in \mathbb{C} \ (j = 1, \dots, n), \ a_n \neq 0).$

Let \mathfrak{A} be the group of all affine transformations. We say that two maps $p_1, p_2 \in \operatorname{Poly}_n$ are *affine conjugate*, denoted by $p_1 \sim_{\mathfrak{A}} p_2$, if there exist a $g \in \mathfrak{A}$ with $g \circ p_1 \circ g^{-1} = p_2$. The *moduli space* of polynomial maps degree *n* is the set of all affine conjugacy classes of elements in Poly_n , which is denoted by M_n .

For each $f \in \text{Poly}_n$, let z_1, z_2, \dots, z_{n+1} be the fixed points of f and μ_j the multipliers at z_j ; $\mu_j = f'(z_j)$ $(1 \le j \le n+1)$, we set $z_{n+1} = \infty$ and hence $\mu_{n+1} = 0$. The elementary symmetric functions of μ_j are

$$\sigma_{n,1} = \mu_1 + \mu_2 + \dots + \mu_{n+1}, \ \dots, \ \sigma_{n,r} = \sum_{j_1 < j_2 < \dots < j_r} \mu_{j_1} \mu_{j_2} \cdots \mu_{j_r}, \ \dots,$$

$$\sigma_{n,n+1} = \mu_1 \mu_2 \cdots \mu_{n+1} (= 0).$$
(1)

Note that these quantities are invariant under affine conjugacy.

© 2006 Japan Society for Symbolic and Algebraic Computation

^{*}masayo@nda.ac.jp

Next, the *holomorphic index* of a rational function f at a fixed point $\zeta \in \mathbb{C}$ is defined to be the complex number

$$\iota(f,\zeta) = \frac{1}{2\pi i} \int_C \frac{dz}{z - f(z)}$$

where we integrate in a small loop C in the positive direction around ζ (see [5]). The following facts are well known as Fatou's index theorem:

- If the multiplier $\mu \neq 1$, then $\iota(f, \zeta) = \frac{1}{1-\mu}$.
- For any polynomial map f which is not the identity map,

$$\sum_{j=1}^{n} \iota(f, z_j) = 0.$$
(2)

In particular, we obtain the following linear relation among the elementary symmetric functions $\sigma_{n,j}$ $(1 \le j \le n + 1)$:

$$0 = \sigma_{n,n+1} = \sum_{k=0}^{n-1} (-1)^{n-k-1} (n-k) \sigma_{n,k}$$
(3)

where we put $\sigma_{n,0} = 1$. (See Theorem 1 in [4]).

Hence, we have a natural projection Ψ_{Poly_n} from a point in M_n to an (n-1)-tuple $(\sigma_{n,1}, \sigma_{n,2}, \cdots, \sigma_{n,n-2}, \sigma_{n,n}) \in \mathbb{C}^{n-1}$:

$$\Psi_{\text{Poly}_n}$$
: $\mathbf{M}_n \longrightarrow \mathbb{C}^{n-1}$.

And in [2] we showed that Ψ_{Poly_n} is not surjective if $n \ge 4$.

Theorem 1 ([2])

The exceptional set

$$\mathcal{E}(n) = \mathbb{C} \setminus \Psi_{\operatorname{Poly}_n}(\mathbf{M}_n)$$

is nonempty for every $n \ge 4$.

To state the situation more precisely, we define the following subset.

Definition 2

Let $\Sigma_*(n)$ ($\subset \mathbb{C}^{n-1}$) be the set of points $(s_{n,1}, \dots, s_{n,n-2}, s_{n,n})$ such that the corresponding solutions $\{m_1, m_2, \dots, m_n\}$ of (1) with $\sigma_{n,j} = s_{n,j}$ for every *j*, where $\sigma_{n,n-1}$ is defined by (3), satisfies one of the following conditions A, B, and C, where we set $\Omega = \{1, \dots, n\}$.

Condition A

- 1. $m_j \neq 1 \ (\forall j \in \Omega),$
- 2. $\sum_{j \in \Omega} \frac{1}{1-m_i} = 0$, and
- 3. for any proper subset ω of Ω , $\sum_{j \in \omega} \frac{1}{1-m_i} \neq 0$.

Condition B Let Ω' be the set $\{k \in \Omega; m_k \neq 1\}$ and *N* the cardinality of Ω' .

- 1. $1 \le N \le n 2$, and
- 2. for any subset ω' of Ω' , $\sum_{j \in \omega'} \frac{1}{1-m_i} \neq 0$.

Condition C $m_j = 1 \ (\forall j \in \Omega).$

J.JSSAC Vol. 12, No. 4, 2006

Remark 3

The set $\Sigma_*(n)$ is disjoint union of the set of points satisfying the conditions A, B, and C, which in turn denoted by X_A , X_B , and X_C , respectively.

Then $\Sigma_*(n)$ is contained in the image of Ψ_{Poly_n} , i.e., $\Sigma_*(n) \cap \mathcal{E}(n) = \emptyset$.

Theorem 4 ([2])

For any point $(s_{n,1}, s_{n,2}, \dots, s_{n,n-2}, s_{n,n})$ in $\Sigma_*(n)$, there exists a polynomial of degree *n* having *n* values $s_{n,1}, s_{n,2}, \dots, s_{n,n-2}, s_{n,n-1}, s_{n,n}$ as the elementary symmetric functions of the multipliers at the fixed points.

Also, we showed the following theorem.

Theorem 5 ([2])

There does not exist a polynomial of degree N with the following multipliers at the fixed points;

$$\underbrace{m, \cdots, m, \frac{n_1 - m}{n_1 - 1}}_{n_1}, \underbrace{m, \cdots, m, \frac{n_2 - m}{n_2 - 1}}_{n_2}, \cdots, \underbrace{m, \cdots, m, \frac{n_k - m}{n_k - 1}}_{n_k} \quad (m \neq 1, \ k \ge 2), \tag{4}$$

where $n_j \ge 2$ $(j = 1, 2, \dots, k)$ and $N = \sum_{j=1}^k n_j$.

2 On the exceptional set

If n = 4, we can parameterize $\mathcal{E}(4)$ as follows.

Theorem 6 ([4])

The exceptional set $\mathcal{E}(4)$ is a punctured curve in \mathbb{C}^3 , and the defining equation is given by:

$$(\sigma_1, \sigma_2, \sigma_4) = \left(4, \ s, \ \frac{(s-4)^2}{4}\right), \quad s \in \mathbb{C} \setminus \{6\}.$$

$$(5)$$

That is, none of quartic polynomials corresponds to the multipliers $\mu, \mu, 2 - \mu, 2 - \mu$ ($\mu \neq 1$).

Moreover the following theorem clarify degeneration of polynomials from dynamical viewpoint when points in \mathbb{C}^3 tend to the exceptional set $\mathcal{E}(4)$ with real *s* in (5).

Theorem 7

Let *D* be a subset of $\Sigma(4) = \Psi_{\text{Poly}_n}(\mathbf{M}_n)$ defined by

$$D = \left\{ (4, s_2, s_4) \, | \, s_2 < -\frac{1}{4} (s_4^2 - 6s_4 - 19), \, s_4 < \frac{(2 - s_2)^2}{4} \right\} \subset \{4\} \times \mathbb{R}^2.$$

For any $\sigma \in \mathbf{D}$, let p_{σ} be an element in Poly₃ corresponding to σ . Then we can construct two polynomial-like maps (see [1]) $(U, V, p_{\sigma}) \equiv z^2 + c$ and $(\tilde{U}, \tilde{V}, p_{\sigma}) \equiv z^2 + \bar{c}$ so that *c* and \bar{c} converge to a common value $\tilde{c} \in \mathbb{R}$ as σ tends to a point of $\mathcal{E}(4)$.

The limit value \tilde{c} depends only on the landing point $(4, s, \frac{(s-4)^2}{4}) \in \mathcal{E}(4)$ and is written as $\tilde{c} = \frac{s-4}{8}$.

Figure 1:Figure 2:Figure 3:Figure 4:

Figure 1 shows Julia set of $p(z) = z^4 + 3.8199z^2 + z + 3.775218$ that corresponds to the point $(4, -1.7696160, 8.8480801) \in \Sigma(4). (-2 < \Re z, \Im z < 2.)$

Figure 2 shows enlargement of Figure 1. ($-0.2 < \Re z < 0.28$, $1.137 < \Im z < 1.617$.) Figure 3 shows Julia set of corresponding quadratic-like map. ($-0.2 < \Re z < 0.28$, $1.137 < \Im z < 1.617$.)

Figure 4 shows Julia set of quadratic polynomial $p_c(z) = z^2 + (-0.726 + 0.183i)$.

Proof From (5), $\mathcal{E}(4)$ is contained in the plane $\{(4, \sigma_2, \sigma_4)\} \cong \mathbb{C}^2$. On *D*, any corresponding polynomial p_{σ} has two attracting fixed points of multiplier μ , $\overline{\mu}$ and the three critical points $x_0 \in \mathbb{R}$, $z_0, \overline{z}_0 \in \mathbb{C} \setminus \mathbb{R}$. Dynamics of p_{σ} are symmetric with respect to the real axis (see Figure 1). Hence we can choose suitable topological disks *V*, \overline{V} bounded by equipotential curves such that $z_0 \in V, \overline{z}_0 \in \overline{V}$ and $V \cap \overline{V} = \emptyset$. Then $(f(V), V, p_{\sigma})$ and $(f(\overline{V}), \overline{V}, p_{\sigma})$ are quadratic-like maps hybrid equivalent to $z^2 + c$ and $z^2 + \overline{c}$ respectively. If σ converges to a point $(4, s, \frac{(s-4)^2}{4}) \in \mathcal{E}(4)$, two parameters c, \overline{c} are converge to common value $\frac{s-4}{8}$ (see Figure 3 and 4).

Next, even when n = 5, we can give the explicit parametric representation of the exceptional set $\mathcal{E}(5)$.

Theorem 8

The exceptional set $\mathcal{E}(5)$ is parameterized as follows:

$$(\sigma_1, \sigma_2, \sigma_3, \sigma_5) = \left(s, \frac{-4s^2 + 76s - 190}{9}, \frac{-2(s - 8)(4s - 5)(2s - 7)}{27}, \frac{(2s - 13)(s - 8)(2s - 7)^3}{243}\right), \quad (s \in \mathbb{C} \setminus \{5\}).$$

Namely none of polynomials of degree five corresponds to the multipliers μ , μ , μ , $2 - \mu$, $\frac{3-\mu}{2}$ ($\mu \neq 1$).

Proof For a monic and centered polynomial $p(z) = z^5 + c_3 z^3 + c_2 z^2 + c_1 z + c_0$, the four values $\sigma_{5,1}, \sigma_{5,2}, \sigma_{5,3}, \sigma_{5,5}$ are determined from c_0, \dots, c_3 , which can be written down explicitly as follows:

$$\begin{split} \sigma_{5,1} &= 4c_3^2 - 15c_1 + 20, \\ \sigma_{5,2} &= 4c_3^4 - (36c_1 - 52)c_3^2 + 27c_2^2c_3 - 50c_0c_2 + 80c_1^2 - 220c_1 + 150, \\ \sigma_{5,3} &= (-12c_1 + 24)c_3^4 + 4c_2^2c_3^3 + (40c_0c_2 + 88c_1^2 - 284c_1 + 220)c_3^2 - ((117c_1 - 198)c_2^2 + 125c_0^2)c_3 + 27c_2^4 + (300c_0c_1 - 450c_0)c_2 - 160c_1^3 + 720c_1^2 - 1050c_1 + 500, \\ \sigma_{5,5} &= 108c_0^2c_5^5 + ((-72c_0c_1 + 72c_0)c_2 + 16c_1^3 - 48c_1^2 + 36c_1)c_3^4 + (16c_0c_2^3 + (-4c_1^2)c_1^2 - 1050c_1 + 50c_1)c_3^2 + (-4c_1^2)c_2^2 + 16c_1^2 - 16c_1^2 - 16c_1^2 - 16c_1^2 + 16c_1^2 - 16c_1^2 - 16c_1^2 + 16c_1^2 - 16c_1^2$$

$$\begin{aligned} +8c_1)c_2^2 &- 900c_0^2c_1 + 900c_0^2)c_3^3 + (825c_0^2c_2^2 + (560c_0c_1^2 - 1120c_0c_1 + 600c_0)c_2 \\ &- 128c_1^4 + 512c_1^3 - 680c_1^2 + 300c_1)c_3^2 - ((630c_0c_1 - 630c_0)c_2^3 - (144c_1^3 - 432c_1^2 \\ &+ 315c_1)c_2^2 + 3750c_0^3c_2 - 2000c_0^2c_1^2 + 4000c_0^2c_1 - 1875c_0^2)c_3 + 108c_0c_2^5 - (27c_1^2 \\ &- 54c_1)c_2^4 + (2250c_0^2c_1 - 2250c_0^2)c_2^2 - (1600c_0c_1^3 - 4800c_0c_1^2 + 4500c_0c_1 \\ &- 1250c_0)c_2 + 256c_1^5 - 1280c_1^4 + 2400c_1^3 - 2000c_1^2 + 625c_1 + 3125c_0^4. \end{aligned}$$

Hence, the defining equation of $\mathcal{E}(5)$ can be written as in the theorem.

3 Outside the exceptional set

Outside the exceptional set $\mathcal{E}(n)$, the preimage of a point can contain infinite number of points in general. But if the preimage contains only a finite number of points, we can easily see that it contains at most (n - 2)! points. Furthermore, we show the following theorem.

Theorem 9

For every σ in general position, $\Psi_{\text{Poly}_n}^{-1}(\sigma)$ consists of (n-2)! points.

Proof By recalling the definition of the set X_A , the assertion follows from Bézout's theorem.

References

- [1] L. Carleson and T. W. Gamelin. Complex Dynamics. UTX. Springer-Verlag, 1993.
- [2] M. Fujimura. Data on Multipliers as the Moduli Space of the Polynomials. preprint.
- [3] M. Fujimura. Projective Moduli Space for the Polynomials. to appear in *Dynamics of Continuous, Discrete and Impulsive Systems*.
- [4] M. Fujimura and K. Nishizawa. Moduli spaces and symmetry loci of polynomial maps. In W. Küchlin, editor, *Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation*, pages 342–348. ACM, 1997.
- [5] J. Milnor. Dynamics in one complex variables: Introductory lectures. Vieweg, 1999.