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Abstract

The problem of approximating the greatest common divisor(GCD) for polynomials with inexact co-
efficients can be formulated as a low rank approximation problem with a Sylvester matrix. In this
paper, we present an algorithm based on fast Structured Total Least Norm(STLN) for constructing
a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact
GCD of given degree.

1 Introduction
Approximate GCD computation of univariate polynomials has been studied by many authors [24,
20, 8, 11, 4, 2, 15, 21, 25, 9, 28]. Particularly, in [8, 11, 25, 9, 28], Singular Value Decomposi-
tion(SVD) of the Sylvester matrix has been used to obtain a degree upper bound of approximate
GCDs and furthermore to obtain an approximate GCD. However, SVD computation is not appro-
priate for computing the minimal distance to the structured low rank matrix.

In [10, 30], authors described an algorithm based on STLN [22] for constructing a Sylvester
matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of
given degree. For their algorithm, the overall computation time depends on solving a sequence least
squares(LS) problems. In the present paper, based on the displacement structure of the coefficient
matrices, we describe a fast algorithm using the generalized Schur algorithm [5, 6] for solving the
LS problems and deriving a fast version of the approximate GCD algorithm.

The organization of this paper is as follows. In Section 2, we briefly introduce equivalence
between low rank approximation of a Sylvester matrix [10, 30] and solving a minimization problem
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with structured coefficient matrix. In Section 3, we propose a fast method based on the generalized
Schur algorithm for solving the minimization problem efficiently. Finally, in Section 4, we present
a fast version of the algorithm [10, 30] for computing approximate GCD of univariate polynomials.

2 Preliminaries
Given two polynomials a, b ∈ C[x] with a = amxm + · · · + a1x + a0 and b = bnxn + · · · + b1x + b0,
the Sylvester matrix for a and b is:

S (a, b) =



am bn

am−1 am bn−1 bn
... am−1

. . .
... bn−1

. . .

a1
...

. . . am b1
...

. . . bn

a0 a1 am−1 b0 b1 bn−1

a0
. . .

... b0
. . .

...

. . . a1
. . . b1

a0 b0



.

Denoting the perturbations of a and b by ∆a = ∆amxm + · · · + ∆a1x + ∆a0, ∆b = ∆bnxn + · · · +
∆b1x + ∆b0 respectively, we consider the minimal perturbation problem: minimize ‖∆a‖22 + ‖∆b‖22
preserving that a + ∆a and b + ∆b have an exact GCD of a given degree.

Let us denote S k = [a Ak] as the k-th Sylvester matrix,

S k =



am 0 · · · 0 0 bn 0 · · · 0 0
am−1 am · · · 0 0 bn−1 bn · · · 0 0
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
0 0 · · · a0 a1 0 0 · · · b0 b1
0 0 · · · 0 a0 0 0 · · · 0 b0


︸                                    ︷︷                                    ︸

n−k+1
︸                                ︷︷                                ︸

m−k+1

,

where a is the first column of S k.

Example 1
[30] Suppose m = n = 3, k = 2, then S 2 = [a A2],

a =



a3

a2

a1

a0

0


, A2 =



0 b3 0
a3 b2 b3

a2 b1 b2

a1 b0 b1

a0 0 b0


.

For simplicity, we express the perturbations ∆a and ∆b by a m + n + 2-dimensional vector d,

d = (d1 , d2 , · · · , dm+n+1 , dm+n+2)T ,



J.JSSAC Vol. 11, No. 3,4, 2005 167

and represent the k-th Sylvester structured perturbation of S k as

[∆a Dk] =



d1 0 · · · 0 0 dm+2 0 · · · 0 0
d2 d1 · · · 0 0 dm+3 dm+2 · · · 0 0
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
0 0 · · · dm+1 dm 0 0 · · · dm+n+2 dm+n+1
0 0 · · · 0 dm+1 0 0 · · · 0 dm+n+2


︸                                         ︷︷                                         ︸

n−k+1
︸                                                           ︷︷                                                           ︸

m−k+1

,

where ∆a is the first column of the perturbation matrix.
The following two theorems are given in [10, 30].

Theorem 2
Given a(x) , b(x) ∈ C[x] with deg(a) = m and deg(b) = n. Let S (a, b) be the Sylvester matrix of
a(x) and b(x), S k the k-th Sylvester matrix, 1 ≤ k ≤ min(m, n). Then the following statements are
equivalent:

(1) rank(S ) ≤ m + n − k.

(2) deg(gcd(a, b)) ≥ k.

(3) rank(S k) ≤ m + n + 1 − 2k.

(4) Rank deficiency of S k is not less than one.

Theorem 3
In the same assumption as in Theorem 2, let S k = [a Ak], where a is the first column of S k, then
rank(S ) ≤ m + n − k if and only if Akx = a has a solution.

Based on the above two theorems we know that, for a given degree k, it is always possible to
find a k-th Sylvester structured perturbation matrix [∆a Dk] such that a + ∆a ∈ Range(Ak + Dk).
Then, the minimal perturbation problem can be formulated as the following equality-constrained
least squares problem:

min
x
‖d‖2, subject to r = 0, (1)

where the structured residual r is given by

r = a + ∆a − (Ak + Dk)x.

Applying the penalty method [22], we transform (1) into

min
d,x

∥∥∥∥∥∥∥
 wr

d


∥∥∥∥∥∥∥

2

, (2)

where w is a large penal value.
It is an elementary calculus to show that, with matrices Pk and Xk ∈ C(m+n−k+1)×(m+n+2), vectors

∆a and Dkx can be expressed as
∆a = Pk d, Dkx = Xkd.

Here

Pk =

 Im+1 0
0 0

 ,
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where Im+1 is an identity matrix of order m + 1, and

Xk =



0 xn+1−k

x1
. . . xn+2−k

. . .

...
. . . 0

...
. . . xn+1−k

xn−k x1 xm+n+1−2k xn+2−k

. . .
...

. . .
...

xn−k xm+n+1−2k


︸                     ︷︷                     ︸

m+1
︸                                       ︷︷                                       ︸

n+1

.

Then (2) becomes the following least squares problem:

min
∆x∆d

∥∥∥∥∥
 w(Xk − Pk) w(Ak + Dk)

Im+n+2 0

  ∆d
∆x

 +  −wr
d

 ∥∥∥∥∥
2
, (3)

where Im+n+2 is an identity matrix of order m + n + 2.

Example 4
Continued from Example 1,

P2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0


,

X2 =



0 0 0 0 x2 0 0 0
x1 0 0 0 x3 x2 0 0
0 x1 0 0 0 x3 x2 0
0 0 x1 0 0 0 x3 x2

0 0 0 x1 0 0 0 x3


.

3 A fast algorithm for solving the least squares problem (3)
Now we present an efficient method, based on the displacement structure of the involving coeffi-
cient matrix, to solve the least squares problem (3).

The displacement structure of an i × i Hermitian matrix H was originally defined by Kailath,
Kung and Morf[16] as

∇H = H − ZiHZT
i , (4)

where i is a positive integer. Throughout this paper, Zi denotes the i× i lower shift matrix with ones
on the first subdiagonal and zeros elsewhere: For example, when i = 3,

Z3 =


0 0 0
1 0 0
0 1 0

 .
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If ∇H has a lower rank r (<< i) independent of i, then r is referred to as the displacement rank of H.
It follows that ∇H can be factored as ∇H = GJGT , where G is an i × r matrix and J is a signature
matrix. The pair (G, J) is said to be a generator pair of H. Triangular factorization of H can be
efficiently carried out by a generalized Schur algorithm [17], which operates on the generator pair
(G, J) of H directly.

Let us denote the coefficient matrix of the system in (3) by M,

M =

 w(Xk − Pk) w(Ak + Dk)
Im+n+2 0

 .
Theorem 5
M is a structured matrix with displacement rank at most 4.

Proof We construct two block-shift matrices

F1 = diag(Zm+n−k+1, Zm+n+2), F2 = diag(Zm+1,Zn+1,Zm−k,Zn−k+1),

then the rank of the matrix M − F1MFT
2 is at most 4. In fact,

M − F1MFT
2 = [u1,u2,u3,u4][e1, em+2, em+n+3, e2m+n−k+3]T ,

where ei denotes the i-th column of an identity matrix I2m+2n−k+3, and

u1 = Column(M, 1), u2 = Column(M,m + 2),
u3 = Column(M,m + n + 3), u4 = Column(M, 2m + n − k + 3).

Example 6
Continued from Example 1, u1, · · · ,u4 can be written down directly as:

u1 = [−w, wx1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]T ,

u2 = [wx2, wx3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T ,

u3 = [0, w(a3 + d1),w(a2 + d2),w(a1 + d3),w(a0 + d4), 0, 0, 0, 0, 0, 0, 0, 0]T ,

u4 = [w(b3 + d5),w(b2 + d6),w(b1 + d7),w(b0 + d8), 0, 0, 0, 0, 0, 0, 0, 0, 0]T .

Let y =
 ∆d
∆x

 and z =
 wr
−d

 , the least squares problem (3) can be rewritten as

min
y
‖My − z‖2. (5)

As in [5, 6], we consider the augmented matrix

T =

 MT M MT

M 0

 .
Theorem 7
The Hermitian matrix T is a block-shift structured matrix, and its displacement rank is at most 8.
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Proof Write a block-shift matrix

F = diag(Zm+1, Zn+1,Zm−k,Zn−k+1, Zm+n−k+1,Zm+n+2),

we can construct a generator pair (G, J) for T so that T − FT FT = GJGT . Here J = diag(I4,−I4),
where I4 is the identity matrix of order 4, and G consists of the following eight columns:

g1 = Column(T, 1) except that
g1[1] = (T [1, 1] + 1)/2, g1[m + 2] = T [1,m + 2]/2,

g2 = Column(T,m + 2) except that
g2[1] = T [1,m + 2]/2, g2[m + 2] = (T [m + 2,m + 2] + 1)/2,

g3 = Column(T,m + n + 3), except that g3[1] = 0, g3[m + 2] = 0,
g3[m + n + 3] = (T [m + n + 3,m + n + 3] + 1)/2,
g3[2m + n − k + 3] = T [m + n + 3, 2m + n − k + 3]/2,

g4 = Column(T, 2m + n − k + 3), except that g4[1] = 0, g4[m + 2] = 0,
g4[m + n + 3] = T [m + n + 3, 2m + n − k + 3]/2,
g4[2m + n − k + 3] = (T [2m + n − k + 3, 2m + n − k + 3] + 1)/2,

g5 = Column(T, 1), except that
g5[1] = (T [1, 1] − 1)/2, g5[m + 2] = T [1,m + 2]/2,

g6 = Column(T,m + 2), except that
g6[1] = T [1,m + 2]/2, g6[m + 2] = (T [m + 2,m + 2] − 1)/2.

g7 = Column(T,m + n + 3), except that g7[1] = 0, g7[m + 2] = 0,
g7[m + n + 3] = (T [m + n + 3,m + n + 3] − 1)/2,
g7[2m + n − k + 3] = T [m + n + 3, 2m + n − k + 3]/2,

g8 = Column(T, 2m + n − k + 3), except that g8[1] = 0, g8[m + 2] = 0,
g8[m + n + 3] = T [m + n + 3, 2m + n − k + 3]/2,
g8[2m + n − k + 3] = (T [2m + n − k + 3, 2m + n − k + 3] − 1)/2.

Remark 8
We don’t explicitly form the large matrix T . For example,

Column(T,m + 2) =

 MT Column(M,m + 2)
Column(M,m + 2)

 .
Since

MT − F2MT FT
1 = [e1, em+2, em+n+3, e2m+n−k+3][u1,u2,u3,u4]T , (6)

the matrix-vector product can be efficiently implemented by the convolution computations. Let us
assume that m ≥ n, MT can be represented by columns of generator as

MT = L1NT
1 + L2NT

2 + L3NT
3 + L4NT

4 ,

where
L j = [v j, F2v j, · · · , Fm

2 v j], N j = [u j, F1u j, · · · , Fm
1 u j],
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and v j( j = 1, · · · , 4) denote the four unit vectors in (6). Hence, the involving matrix-vector product
can be efficiently implemented by a few number of vectors products.

Based on the results in [5, 6], after applying 2m+ 2n− 2k+ 3 positive steps and 2m+ 2n− k+ 3
negative steps of the generalized Schur algorithm to the generator pair (G, J) of T , we can obtain a
backward stable triangular factorization:

T̂ =

 R̂T 0
Q̂ D̂

  R̂ Q̂T

0 −D̂T

 , and ‖T − T̂‖2 ≤ ε. (7)

When the matrix M is well-conditioned, the lower triangular matrix D̂ is also well-conditioned and
D̂−1Q̂ is numerically orthogonal [5]. From (7), we also have

‖M − Q̂R̂‖2 ≤ ε.

Then by solving the nearby system
D̂(D̂−1Q̂)R̂y = z,

we obtain the solution of (5) as

y = R̂−1(Q̂T D̂−T )D̂−1z. (8)

If M is ill-conditioned, in order to obtain a backward stable triangular factorization, we consider
the perturbed matrix:

T̄ =

 MT M + αI(1) MT

M −βI(2)

 ,
αI(1) and βI(2) are all small multiples of identity matrices. The displacement rank of T̄ increases by
two:

T̄ − FT̄ FT = ḠJ̄ḠT ,

where
J̄ = diag(I4,−I6),

and the first 8 columns of Ḡ have similar forms as G, we only need to update the four diagonal
elements as

T [1, 1] −→ T [1, 1] + α,

T [m + 2,m + 2] −→ T [m + 2,m + 2] + α,

T [m + n + 3,m + n + 3] −→ T [m + n + 3,m + n + 3] + α,

T [2m + n − k + 3, 2m + n − k + 3] −→ T [2m + n − k + 3, 2m + n − k + 3] + α.

The last two columns of Ḡ are

ḡ9 = [ 0, · · · , 0︸     ︷︷     ︸
2m+2n−2k+3

,
√
β, 0, · · · , 0, 0 ]T ,

ḡ10 = [ 0, · · · , 0, 0︸         ︷︷         ︸
3m+3n−3k+4

,
√
β, 0, · · · , 0 ]T .

Applying the generalized Schur algorithm to the generator pair (Ḡ, J̄) of the perturbed matrix
T̄ , we can obtain a backward stable solution, which has a representation identical to the formula
(8) [5].

In practice, if we start from the degree upper bound of GCDs (obtained from the computation
of the singular value decomposition of the Sylvester matrix), we can always avoid ill-conditioned
cases.
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4 Fast version of Approximate GCD Algorithm
The results of the previous sections provide us with a fast version of the approximate GCD algo-
rithm [10, 30].

Algorithm AppFSylv-k

Input - A Sylvester matrix S generated by two polynomials a(x) and b(x) of degrees m and n
respectively, m ≥ n, ‖a‖2 = ‖b‖2 = 1; an integer k, 1 ≤ k ≤ n; and a tolerance tol.

Output- Two polynomials ã and b̃ with rank(S (ã, b̃)) ≤ m + n − k, and the Euclidean distance
‖ã − a‖22 + ‖b̃ − b‖22 is reduced to a minimum.

1. Form the k-th Sylvester matrix S k, let a be the first column of S k and Ak be the last m+n−2k+1
columns of S k. Let Dk = 0, ∆a = 0.

2. Compute x from min ‖Akx − a‖2 and r = a − Akx. Form Pk and Xk as shown in Section 2.

3. Repeat

(a) Apply fast algorithm described in Section 3 to solve

min
∆x∆d

∥∥∥∥∥
 w(Xk − Pk) w(Ak + Dk)

Im+n+2 0

  ∆d
∆x

 +  −wr
d

 ∥∥∥∥∥
2
.

(b) Set x = x + ∆x, d = d + ∆d.

(c) Construct matrices [∆a Dk] from d and Xk from x. Set Ak = Ak+Dk, a = a+∆a, r = a−Akx.
until (‖∆x‖2 ≤ tol and ‖∆d‖2 ≤ tol)

4. Output the polynomials ã and b̃ formed from [a Ak].

Given a tolerance ε, the fast algorithm AppFSylv-k can be used to compute the highest degree
ε-GCD of polynomials a and b with degrees m and n respectively. Denote by r̄ the degree upper
bound of ε-GCD, we start from k = r̄ and perform AppFSylv-k to compute the minimum N =
‖ã − a‖22 + ‖b̃ − b‖22 with rank(S (ã, b̃)) ≤ m + n − k. If N < ε, then we can compute the ε-GCD
from the matrix S k(ã, b̃) taking a method as in [12]. Otherwise, we reduce k by one and repeat the
AppFSylv-k algorithm.

5 Concluding Remarks
In this paper, we have presented a fast algorithm for constructing low rank approximation of a
Sylvester matrix. The overall computation time of the algorithm AppFSylv-k depends on the third
step which costs O(s2 + st + t2), where s, t denote the row dimension 2m + 2n − k + 3 and column
dimension 2m+2n−2k+3 of the involving coefficient matrix respectively. The complexity needed
in solving the least squares problem by algorithm presented in [10, 30] is O(st2). This shows that
our algorithm is one order faster than the previous algorithm.
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