
数式処理 J.JSSAC (2005)
Vol. 11, No. 3,4, pp. 165 - 174

Noda2005論文

Fast Low Rank Approximation of a Sylvester Matrix
by Structured Total Least Norm

Bingyu Li Zhengfeng Yang
Lihong Zhi

Institute of Systems Science, AMSS,

Academia Sinica
Beijing 100080, China

Abstract

The problem of approximating the greatest common divisor(GCD) for polynomials with inexact co-
efficients can be formulated as a low rank approximation problem with a Sylvester matrix. In this
paper, we present an algorithm based on fast Structured Total Least Norm(STLN) for constructing
a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact
GCD of given degree.

1 Introduction
Approximate GCD computation of univariate polynomials has been studied by many authors [24,
20, 8, 11, 4, 2, 15, 21, 25, 9, 28]. Particularly, in [8, 11, 25, 9, 28], Singular Value Decomposi-
tion(SVD) of the Sylvester matrix has been used to obtain a degree upper bound of approximate
GCDs and furthermore to obtain an approximate GCD. However, SVD computation is not appro-
priate for computing the minimal distance to the structured low rank matrix.

In [10, 30], authors described an algorithm based on STLN [22] for constructing a Sylvester
matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of
given degree. For their algorithm, the overall computation time depends on solving a sequence least
squares(LS) problems. In the present paper, based on the displacement structure of the coefficient
matrices, we describe a fast algorithm using the generalized Schur algorithm [5, 6] for solving the
LS problems and deriving a fast version of the approximate GCD algorithm.

The organization of this paper is as follows. In Section 2, we briefly introduce equivalence
between low rank approximation of a Sylvester matrix [10, 30] and solving a minimization problem
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with structured coefficient matrix. In Section 3, we propose a fast method based on the generalized
Schur algorithm for solving the minimization problem efficiently. Finally, in Section 4, we present
a fast version of the algorithm [10, 30] for computing approximate GCD of univariate polynomials.

2 Preliminaries
Given two polynomials a, b ∈ C[x] with a = amxm + · · · + a1x + a0 and b = bnxn + · · · + b1x + b0,
the Sylvester matrix for a and b is:

S (a, b) =



am bn

am−1 am bn−1 bn
... am−1

. . .
... bn−1

. . .

a1
...

. . . am b1
...

. . . bn

a0 a1 am−1 b0 b1 bn−1

a0
. . .

... b0
. . .

...

. . . a1
. . . b1

a0 b0



.

Denoting the perturbations of a and b by ∆a = ∆amxm + · · · + ∆a1x + ∆a0, ∆b = ∆bnxn + · · · +
∆b1x + ∆b0 respectively, we consider the minimal perturbation problem: minimize ‖∆a‖22 + ‖∆b‖22
preserving that a + ∆a and b + ∆b have an exact GCD of a given degree.

Let us denote S k = [a Ak] as the k-th Sylvester matrix,

S k =



am 0 · · · 0 0 bn 0 · · · 0 0
am−1 am · · · 0 0 bn−1 bn · · · 0 0
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
0 0 · · · a0 a1 0 0 · · · b0 b1
0 0 · · · 0 a0 0 0 · · · 0 b0


︸                                    ︷︷                                    ︸

n−k+1
︸                                ︷︷                                ︸

m−k+1

,

where a is the first column of S k.

Example 1
[30] Suppose m = n = 3, k = 2, then S 2 = [a A2],

a =



a3

a2

a1

a0

0


, A2 =



0 b3 0
a3 b2 b3

a2 b1 b2

a1 b0 b1

a0 0 b0


.

For simplicity, we express the perturbations ∆a and ∆b by a m + n + 2-dimensional vector d,

d = (d1 , d2 , · · · , dm+n+1 , dm+n+2)T ,
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and represent the k-th Sylvester structured perturbation of S k as

[∆a Dk] =



d1 0 · · · 0 0 dm+2 0 · · · 0 0
d2 d1 · · · 0 0 dm+3 dm+2 · · · 0 0
.
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. · · ·
.
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. · · ·
.
.
.

.

.

.
0 0 · · · dm+1 dm 0 0 · · · dm+n+2 dm+n+1
0 0 · · · 0 dm+1 0 0 · · · 0 dm+n+2


︸                                         ︷︷                                         ︸

n−k+1
︸                                                           ︷︷                                                           ︸

m−k+1

,

where ∆a is the first column of the perturbation matrix.
The following two theorems are given in [10, 30].

Theorem 2
Given a(x) , b(x) ∈ C[x] with deg(a) = m and deg(b) = n. Let S (a, b) be the Sylvester matrix of
a(x) and b(x), S k the k-th Sylvester matrix, 1 ≤ k ≤ min(m, n). Then the following statements are
equivalent:

(1) rank(S ) ≤ m + n − k.

(2) deg(gcd(a, b)) ≥ k.

(3) rank(S k) ≤ m + n + 1 − 2k.

(4) Rank deficiency of S k is not less than one.

Theorem 3
In the same assumption as in Theorem 2, let S k = [a Ak], where a is the first column of S k, then
rank(S ) ≤ m + n − k if and only if Akx = a has a solution.

Based on the above two theorems we know that, for a given degree k, it is always possible to
find a k-th Sylvester structured perturbation matrix [∆a Dk] such that a + ∆a ∈ Range(Ak + Dk).
Then, the minimal perturbation problem can be formulated as the following equality-constrained
least squares problem:

min
x
‖d‖2, subject to r = 0, (1)

where the structured residual r is given by

r = a + ∆a − (Ak + Dk)x.

Applying the penalty method [22], we transform (1) into

min
d,x

∥∥∥∥∥∥∥
 wr

d


∥∥∥∥∥∥∥

2

, (2)

where w is a large penal value.
It is an elementary calculus to show that, with matrices Pk and Xk ∈ C(m+n−k+1)×(m+n+2), vectors

∆a and Dkx can be expressed as
∆a = Pk d, Dkx = Xkd.

Here

Pk =

 Im+1 0
0 0

 ,
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where Im+1 is an identity matrix of order m + 1, and

Xk =



0 xn+1−k

x1
. . . xn+2−k

. . .

...
. . . 0

...
. . . xn+1−k

xn−k x1 xm+n+1−2k xn+2−k

. . .
...

. . .
...

xn−k xm+n+1−2k


︸                     ︷︷                     ︸

m+1
︸                                       ︷︷                                       ︸

n+1

.

Then (2) becomes the following least squares problem:

min
∆x∆d

∥∥∥∥∥
 w(Xk − Pk) w(Ak + Dk)

Im+n+2 0

  ∆d
∆x

 +  −wr
d

 ∥∥∥∥∥
2
, (3)

where Im+n+2 is an identity matrix of order m + n + 2.

Example 4
Continued from Example 1,

P2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0


,

X2 =



0 0 0 0 x2 0 0 0
x1 0 0 0 x3 x2 0 0
0 x1 0 0 0 x3 x2 0
0 0 x1 0 0 0 x3 x2

0 0 0 x1 0 0 0 x3


.

3 A fast algorithm for solving the least squares problem (3)
Now we present an efficient method, based on the displacement structure of the involving coeffi-
cient matrix, to solve the least squares problem (3).

The displacement structure of an i × i Hermitian matrix H was originally defined by Kailath,
Kung and Morf[16] as

∇H = H − ZiHZT
i , (4)

where i is a positive integer. Throughout this paper, Zi denotes the i× i lower shift matrix with ones
on the first subdiagonal and zeros elsewhere: For example, when i = 3,

Z3 =


0 0 0
1 0 0
0 1 0

 .
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If ∇H has a lower rank r (<< i) independent of i, then r is referred to as the displacement rank of H.
It follows that ∇H can be factored as ∇H = GJGT , where G is an i × r matrix and J is a signature
matrix. The pair (G, J) is said to be a generator pair of H. Triangular factorization of H can be
efficiently carried out by a generalized Schur algorithm [17], which operates on the generator pair
(G, J) of H directly.

Let us denote the coefficient matrix of the system in (3) by M,

M =

 w(Xk − Pk) w(Ak + Dk)
Im+n+2 0

 .
Theorem 5
M is a structured matrix with displacement rank at most 4.

Proof We construct two block-shift matrices

F1 = diag(Zm+n−k+1, Zm+n+2), F2 = diag(Zm+1,Zn+1,Zm−k,Zn−k+1),

then the rank of the matrix M − F1MFT
2 is at most 4. In fact,

M − F1MFT
2 = [u1,u2,u3,u4][e1, em+2, em+n+3, e2m+n−k+3]T ,

where ei denotes the i-th column of an identity matrix I2m+2n−k+3, and

u1 = Column(M, 1), u2 = Column(M,m + 2),
u3 = Column(M,m + n + 3), u4 = Column(M, 2m + n − k + 3).

Example 6
Continued from Example 1, u1, · · · ,u4 can be written down directly as:

u1 = [−w, wx1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]T ,

u2 = [wx2, wx3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T ,

u3 = [0, w(a3 + d1),w(a2 + d2),w(a1 + d3),w(a0 + d4), 0, 0, 0, 0, 0, 0, 0, 0]T ,

u4 = [w(b3 + d5),w(b2 + d6),w(b1 + d7),w(b0 + d8), 0, 0, 0, 0, 0, 0, 0, 0, 0]T .

Let y =
 ∆d
∆x

 and z =
 wr
−d

 , the least squares problem (3) can be rewritten as

min
y
‖My − z‖2. (5)

As in [5, 6], we consider the augmented matrix

T =

 MT M MT

M 0

 .
Theorem 7
The Hermitian matrix T is a block-shift structured matrix, and its displacement rank is at most 8.
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Proof Write a block-shift matrix

F = diag(Zm+1, Zn+1,Zm−k,Zn−k+1, Zm+n−k+1,Zm+n+2),

we can construct a generator pair (G, J) for T so that T − FT FT = GJGT . Here J = diag(I4,−I4),
where I4 is the identity matrix of order 4, and G consists of the following eight columns:

g1 = Column(T, 1) except that
g1[1] = (T [1, 1] + 1)/2, g1[m + 2] = T [1,m + 2]/2,

g2 = Column(T,m + 2) except that
g2[1] = T [1,m + 2]/2, g2[m + 2] = (T [m + 2,m + 2] + 1)/2,

g3 = Column(T,m + n + 3), except that g3[1] = 0, g3[m + 2] = 0,
g3[m + n + 3] = (T [m + n + 3,m + n + 3] + 1)/2,
g3[2m + n − k + 3] = T [m + n + 3, 2m + n − k + 3]/2,

g4 = Column(T, 2m + n − k + 3), except that g4[1] = 0, g4[m + 2] = 0,
g4[m + n + 3] = T [m + n + 3, 2m + n − k + 3]/2,
g4[2m + n − k + 3] = (T [2m + n − k + 3, 2m + n − k + 3] + 1)/2,

g5 = Column(T, 1), except that
g5[1] = (T [1, 1] − 1)/2, g5[m + 2] = T [1,m + 2]/2,

g6 = Column(T,m + 2), except that
g6[1] = T [1,m + 2]/2, g6[m + 2] = (T [m + 2,m + 2] − 1)/2.

g7 = Column(T,m + n + 3), except that g7[1] = 0, g7[m + 2] = 0,
g7[m + n + 3] = (T [m + n + 3,m + n + 3] − 1)/2,
g7[2m + n − k + 3] = T [m + n + 3, 2m + n − k + 3]/2,

g8 = Column(T, 2m + n − k + 3), except that g8[1] = 0, g8[m + 2] = 0,
g8[m + n + 3] = T [m + n + 3, 2m + n − k + 3]/2,
g8[2m + n − k + 3] = (T [2m + n − k + 3, 2m + n − k + 3] − 1)/2.

Remark 8
We don’t explicitly form the large matrix T . For example,

Column(T,m + 2) =

 MT Column(M,m + 2)
Column(M,m + 2)

 .
Since

MT − F2MT FT
1 = [e1, em+2, em+n+3, e2m+n−k+3][u1,u2,u3,u4]T , (6)

the matrix-vector product can be efficiently implemented by the convolution computations. Let us
assume that m ≥ n, MT can be represented by columns of generator as

MT = L1NT
1 + L2NT

2 + L3NT
3 + L4NT

4 ,

where
L j = [v j, F2v j, · · · , Fm

2 v j], N j = [u j, F1u j, · · · , Fm
1 u j],
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and v j( j = 1, · · · , 4) denote the four unit vectors in (6). Hence, the involving matrix-vector product
can be efficiently implemented by a few number of vectors products.

Based on the results in [5, 6], after applying 2m+ 2n− 2k+ 3 positive steps and 2m+ 2n− k+ 3
negative steps of the generalized Schur algorithm to the generator pair (G, J) of T , we can obtain a
backward stable triangular factorization:

T̂ =

 R̂T 0
Q̂ D̂

  R̂ Q̂T

0 −D̂T

 , and ‖T − T̂‖2 ≤ ε. (7)

When the matrix M is well-conditioned, the lower triangular matrix D̂ is also well-conditioned and
D̂−1Q̂ is numerically orthogonal [5]. From (7), we also have

‖M − Q̂R̂‖2 ≤ ε.

Then by solving the nearby system
D̂(D̂−1Q̂)R̂y = z,

we obtain the solution of (5) as

y = R̂−1(Q̂T D̂−T )D̂−1z. (8)

If M is ill-conditioned, in order to obtain a backward stable triangular factorization, we consider
the perturbed matrix:

T̄ =

 MT M + αI(1) MT

M −βI(2)

 ,
αI(1) and βI(2) are all small multiples of identity matrices. The displacement rank of T̄ increases by
two:

T̄ − FT̄ FT = ḠJ̄ḠT ,

where
J̄ = diag(I4,−I6),

and the first 8 columns of Ḡ have similar forms as G, we only need to update the four diagonal
elements as

T [1, 1] −→ T [1, 1] + α,

T [m + 2,m + 2] −→ T [m + 2,m + 2] + α,

T [m + n + 3,m + n + 3] −→ T [m + n + 3,m + n + 3] + α,

T [2m + n − k + 3, 2m + n − k + 3] −→ T [2m + n − k + 3, 2m + n − k + 3] + α.

The last two columns of Ḡ are

ḡ9 = [ 0, · · · , 0︸     ︷︷     ︸
2m+2n−2k+3

,
√
β, 0, · · · , 0, 0 ]T ,

ḡ10 = [ 0, · · · , 0, 0︸         ︷︷         ︸
3m+3n−3k+4

,
√
β, 0, · · · , 0 ]T .

Applying the generalized Schur algorithm to the generator pair (Ḡ, J̄) of the perturbed matrix
T̄ , we can obtain a backward stable solution, which has a representation identical to the formula
(8) [5].

In practice, if we start from the degree upper bound of GCDs (obtained from the computation
of the singular value decomposition of the Sylvester matrix), we can always avoid ill-conditioned
cases.
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4 Fast version of Approximate GCD Algorithm
The results of the previous sections provide us with a fast version of the approximate GCD algo-
rithm [10, 30].

Algorithm AppFSylv-k

Input - A Sylvester matrix S generated by two polynomials a(x) and b(x) of degrees m and n
respectively, m ≥ n, ‖a‖2 = ‖b‖2 = 1; an integer k, 1 ≤ k ≤ n; and a tolerance tol.

Output- Two polynomials ã and b̃ with rank(S (ã, b̃)) ≤ m + n − k, and the Euclidean distance
‖ã − a‖22 + ‖b̃ − b‖22 is reduced to a minimum.

1. Form the k-th Sylvester matrix S k, let a be the first column of S k and Ak be the last m+n−2k+1
columns of S k. Let Dk = 0, ∆a = 0.

2. Compute x from min ‖Akx − a‖2 and r = a − Akx. Form Pk and Xk as shown in Section 2.

3. Repeat

(a) Apply fast algorithm described in Section 3 to solve

min
∆x∆d

∥∥∥∥∥
 w(Xk − Pk) w(Ak + Dk)

Im+n+2 0

  ∆d
∆x

 +  −wr
d

 ∥∥∥∥∥
2
.

(b) Set x = x + ∆x, d = d + ∆d.

(c) Construct matrices [∆a Dk] from d and Xk from x. Set Ak = Ak+Dk, a = a+∆a, r = a−Akx.
until (‖∆x‖2 ≤ tol and ‖∆d‖2 ≤ tol)

4. Output the polynomials ã and b̃ formed from [a Ak].

Given a tolerance ε, the fast algorithm AppFSylv-k can be used to compute the highest degree
ε-GCD of polynomials a and b with degrees m and n respectively. Denote by r̄ the degree upper
bound of ε-GCD, we start from k = r̄ and perform AppFSylv-k to compute the minimum N =
‖ã − a‖22 + ‖b̃ − b‖22 with rank(S (ã, b̃)) ≤ m + n − k. If N < ε, then we can compute the ε-GCD
from the matrix S k(ã, b̃) taking a method as in [12]. Otherwise, we reduce k by one and repeat the
AppFSylv-k algorithm.

5 Concluding Remarks
In this paper, we have presented a fast algorithm for constructing low rank approximation of a
Sylvester matrix. The overall computation time of the algorithm AppFSylv-k depends on the third
step which costs O(s2 + st + t2), where s, t denote the row dimension 2m + 2n − k + 3 and column
dimension 2m+2n−2k+3 of the involving coefficient matrix respectively. The complexity needed
in solving the least squares problem by algorithm presented in [10, 30] is O(st2). This shows that
our algorithm is one order faster than the previous algorithm.
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