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Abstract

Symbolic procedures for expressing the moments of bootstrap distributions in terms of
multivariate version of symmetric polynomials in the observations and their moments with
respect to population (i.e., moments of bootstrap moments) in terms of population mo-
ments, respectively, are proposed with theoretical discussion. Two examples of application
of the procedures to the bootstrap distributions of the sample correlation coefficient and
of the sample regression coefficient, demonstrate their practical utility.

1 Introduction

The bootstrap method proposed by Efron [7] is a versatile computer-intensive statistical

method for estimating the sampling moments of a statistic based on the given sample

drawn from a population with less information on its properties than required in traditional

statistical analyses. This method has been attracting a number of workers in distribution

theory of statistics, as well as those in various application fields, including life sciences,

social sciences and quality management; see, e.g., Efron and Tibshirani [8]. Among them,

Hall [9, 10, 11], Babu and Singh [1, 2, 3], Beran [4], Bickel and Freedman [6], Singh [17], and

other authors have discussed the bootstrap with close attention on asymptotic expansions.
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Most important statistics, including non-parametric bootstrap estimates of population

parameters, and, excluding those in time series analysis, are functionals in the empirical

distribution F ∗ based on a p-variate random sample

X = (x1,x2, . . . , xn) =

 x11, x21, . . . , xn1
...

...
...

x1p, x2p, . . . , xnp


of size n drawn from an unknown population F , where

F ∗(t) = F ∗ (
(t1, . . . , tp)T

)
=

1
n

#{xi | ∀j = 1, . . . , p, xij ≤ tj ; i = 1, . . . n}.

Hence, those statistics have a kind of symmetric property in the sense of invariance though

the elements of X are arbitrarily permuted.

Looking at such symmetry, Niki [15], Nakagawa and Niki [12], and Niki, Nakagawa

and Hashiguchi [16] have developed a software toolkit for transforming polynomials in

sums of power products into (multivariate) augmented monomial symmetric functions, in

order to obtain higher (approximate) moments of statistics as asymptotic expansions in

1/
√

n. Nakagawa and Niki [13], as well as Nakagawa, Niki and Hashiguchi [14], have

clearly demonstrated the role of computer algebra in obtaining asymptotic expansions for

the probability integrals of sampling distributions. In this article, discussion is extended

to bootstrap distributions.

Let Y = (y1, . . . ,yn) denote a bootstrap sample of size n resampled from the empirical

distribution F ∗. The unknown distribution G of the target statistic T (X) is approximated

with the distribution G∗ of a statistic T (Y ) called “the bootstrap distribution of T” which

is computable by using the Monte-Carlo method.

Our aim is to design a set of algorithms for expressing the moments of G∗ and the

“moments of moments” of G∗ in terms of the moments and product moments of F ∗ and in

those of F , respectively. The toolkit due to Nakagawa and Niki [12] coded in Reduce is

rewritten in Mathematica to be extended for th at purpose. Here, existence of the finite

moments of F of requisite order is assumed throughout this article.

Derivation of the moments of bootstrap distributions and the moments of bootstrap

moments for the distributions of the sample correlation coefficient and of the sample re-

gression coefficient, by using the extended version of the symmetric polynomial toolkit, is

demonstrated in the last section. Several higher order terms given there are new as far as

the authors have known.
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2 Definition and preliminaries

Let º denote the reverse lexicographic ordering over the set of p-dimensional vectors

of non-negative integers defined by

λ = (λ1, . . . , λp)T Â µ = (µ1, . . . , µp)T

⇐⇒ ∃i ∈ {1, . . . , p} (λ1 = µ1, . . . , λi−1 = µi−1, λi > µi),

where the symbol T denotes transposition. Then, define the set F(p) of “p-partitions” as

F(p) =
{
Λ = (λ1,λ2, . . . , ) | λ1 º λ2 º · · · º 0; λ1,λ2, . . . ∈ Np}

.

The number of non-zero vectors in Λ ∈ F(p) is written as `(Λ) and is called the length of

Λ. Two p-partitions are identical, if and only if they have the same non-zero parts. The

set F(p, n) of “p-partitions of length not exceeding n” is then written as

F(p, n) = {Λ | Λ ∈ F(p), `(Λ) ≤ n} .

We also use the notation

Λ = (λ1,λ2, . . .) = (λ
′π1
1 ,λ

′π2
2 , . . .),

where π1, π2, . . . are the multiplicities of the distinct non-zero parts in Λ:

λ
′

1 Â λ
′

2 Â · · · Â 0, π1 + π2 + · · · = `(Λ).

A p-partition is reduced to an ordinary partition if p = 1.

For any p × n matrix U = (u1, . . . ,un) such that ui = (ui1, . . . , uip)T ∈ Np (i =

1, . . . , n), we write a monomial in n independent p-dimensional vectors (i.e., in pn inde-

pendent variables) as

XU = xu1
1 · · ·xun

n = xu11
11 · · ·xu1p

1p · · ·xun1
n1 · · ·xunp

np .

Then, for any Λ = (λ1, . . . ,λn) ∈ F(p, n), we define the “augmented monomial symmetric

polynomial in n of p-dimensional vectors”, AΛ, by letting

AΛ = AΛ(X) =
1

(n − `(Λ))!

∑
σ∈Sn

(σX)Λ, (1)

where
σX = σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

Note that n−`(Λ) in (1) is the number of zero vectors in Λ. We also define the “power sum

in n of p-dimensional vectors” PΛ for Λ = (λ
′π1
1 , . . . , λ

′πt
t ) ∈ F(p), provided `(Λ) < ∞, as

PΛ = PΛ(X) = Pπ1

λ
′
1
· · · Pπt

λ
′
t

=
t∏

j=1

(
n∑

i=1

x
λ

′
j

i

)πj

. (2)
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The polynomials AΛ(X) and PΛ(X) in p-dimensional vectors are obviously invariant

against the action σX of any permutation σ ∈ Sn upon X to be called “p-symmetric” in

this sense. The sets AF(p,n) = {AΛ | Λ ∈ F(p, n)} and PF(p) = {PΛ | Λ ∈ F(p)} are two

bases of the vector space {AF(p,n)} ∼= {PF(p)} spanned by all the p-symmetric polynomials

in n vectors. See Nakagawa and Niki [12], for related topics.

A symbolic algorithm called Algorithm PtoA for changing bases from PF(p) to AF(p,n)

has been designed by Nakagawa and Niki [12], with which we can systematically calculate

the coefficients CΛM in

PΛ =
∑

M∈F(p,n)

CΛM AM. (3)

If X = (x1,x2, . . . , xn) is a p-variate random sample of size n drawn from a population F

with the product moments

µr = EF xr
i = EF xr1

i1xr2
i2 · · ·xrp

ip (4)

of degrees r = (r1, r2, . . . , rp)T ∈ Np, then n−`(Λ) PΛ signifies a product of the sample

product moments of which degrees are given as Λ. Hence, from (3) and the fact that

EF AΛ = n[`(Λ)] µπ1

λ
′
1
· · ·µπt

λ
′
t

, (5)

where n[k] = n(n − 1) · · · (n − k + 1), we can write the expectation of polynomials in

sample product moments as polynomials in µ’s. By using Algorithm PtoA, Nakagawa

and Niki [13] have derived an asymptotic expansion of the distribution of sample correlation

coefficient from non-normal population.

3 Algorithms

Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be, as defined in Section 1, a p-variate

random sample of size n drawn from a population F , and a bootstrap sample of size n

resampled from the empirical distribution F ∗ composed from X.

Our aim is to express the moments of the bootstrap distribution G∗ of a statistic T (Y )

and the moments of moments of G∗ in terms of the moments and product moments of F ∗

and in those of F , respectively.

3.1 Expectation of bootstrap product moments

3.1.1 Theoretical background

The following lemma is fundamental in designing symbolic algorithms for the bootstrap

(product) moments.
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Lemma 1

Let y ∼ F ∗ then, for any λ ∈ Np
, it holds that

EF∗ yλ =
1
n

Pλ(X),

Proof

EF∗ yλ =
∫

yλdF ∗ =
n∑

i=1

1
n

xλ
i =

1
n

Pλ(X),

which gives the lemma.

From the preceding lemma, we have the theorem given below corresponding to (5).

Theorem 2

For any Λ ∈ F(p, n),

EF∗ AΛ(Y ) =
n[`]

n`
PΛ(X),

where ` = `(Λ).

Proof From Lemma 1, we have EF∗ yλ
i = n−1 Pλ for any i ∈ {1, . . . , n} and λ Â 0.

Then the fact that |Sn| = n! gives

EF∗ AΛ(Y ) =
1

(n − `)!

∑
σ∈Sn

EF∗(σY )Λ =
1

(n − `)!

∑
σ∈Sn

∏̀
j=1

EF∗ y
λj

σ(j)

=
1

(n − `)!

∑
σ∈Sn

∏̀
j=1

1
n
Pλj

(X) =
n!

(n − `)! n`

∏̀
j=1

Pλj
(X)

=
n[`]

n`
PΛ(X).

3.1.2 Algorithm for expectation of bootstrap product moments

The following algorithm furnishes us with the break in making the resulting algorithms

for computing the moments or the approximate moments of G∗.

Algorithm 1 (Expectation of PΛ(Y ) with respect to F ∗)

Input: Λ ∈ F(p)

Output: EF∗ PΛ(Y ) as a member of the vector space {PF(p,n)(X)}

1. Let w ← PΛ(Y ) and transform it into the space {AF(p,n)(Y )} by applying Algorithm

PtoA.

2. Take expectation for each term in w, by using Theorem 2, to give w ← EF∗ w.

3. Return w after simplification.
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3.2 Bootstrap moments of statistics

3.2.1 Approximate moments of statistics

It is well known that quite many statistics, including the sample correlation coeffi-

cient and the sample regression coefficient, are smooth functions of the sample (product)

moments, i.e., of the members of PF(p). The distributions of those statistics satisfy the

Cornish-Fisher assumption and have asymptotic expansions formally constructible from

their truncated formal expansions for the moments, namely, approximate moments. See

Bhattacharya and Ghosh [5], for details.

Such a smooth statistic T (X) tends to a population parameter θ of which value is

usually to be estimated, as n tends to infinity, with asymptotic speed of convergence

EF

(
T (X) − θ

)2 ∼ O(n−1). Then the semi-standardized random variable Wn composed

from T (X) as

Wn =
√

n
(
T (X) − θ

)
, (6)

can be expanded as in the form

Wn = Wn0 +
1√
n

Wn1 +
1
n

Wn2 + · · · , (7)

where each Wni (i = 1, 2, . . .) is a polynomial in the members of PF(p)(X) and independent

to n. It is also well known, concerning the k-th moments, that

EF W k
n ∼


O

(
n− 1

2

)
, if k is odd;

O(1), if k is even.

(8)

The bootstrap analogue W ∗
n to (6) is defined as

W ∗
n =

√
n

(
T (Y ) − T (X)

)
(9)

=
√

n
(
T (Y ) − θ

)
−
√

n
(
T (X) − θ

)
(10)

and has the corresponding asymptotic properties to (7) and (8).

3.2.2 Algorithms for bootstrap moments of statistics

An algorithm for obtaining the k-th approximate moment sνk of W ∗
n , about the origin,

which satisfies

EF∗ W ∗
n

k = sνk + o(n− s
2 )

is outlined in the following.
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Algorithm 2 (Moment or approximate moment of G∗)

Input: k, s and W ∗
n =

√
n

(
T (Y ) − T (X)

)
.

Output: sνk =
∑

Λ∈F(p,n)

cΛPΛ(X) = EF∗ W ∗
n

k + o(n− s
2 ).

1. Generate the truncated Taylor expansion for W ∗
n

k about the origin up to the terms of

O(n− s
2 ) and set it into Q. Simplify Q to be a member of {PF(p)(Y )}.

2. Compute sνk ← EF∗ Q, by applying Algorithm 1 on each PΛ(Y )
(
Λ ∈ F(p)

)
in Q.

3. Return sνk after simplification in order that it becomes a member of {PF(p,n)(X)}.

3.2.3 Algorithms for moments of bootstrap moments

The t-th moment sνkt = EF (sνk)t with respect to F can be obtained by using the

following algorithm.

Algorithm 3 (“Moment of moment” of G∗)

Input: s, t and sνk ∈ {PF(p,n)(X)}

Output: sνkt ∼ EF (sνk)t.

1. Set R ← (sνk)t after expanding the power, where elimination of terms of o(n− s
2 ) is

performed “on the fly”.

2. Rewrite each PΛ(X)
(
Λ ∈ F(p, n)

)
in R into a member of {AF(p,n)(X)} by using

Algorithm PtoA.

3. Take expectation sνkt ← EF R, by applying (5) term by term, then return sνkt after

simplification.

3.2.4 Remarks

For cases that T (X) ∈ {PF(p)(X)}, a more simplified algorithm than Algorithm 2

without computing the Taylor expansion is to be applied for the sake of speed and ease of

use.

In actual applications, as shown in the next section, it may be more convenient to divide

W ∗
n into two parts as in (10) and handle each part separately than to process as it is in

the form of (9).
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4 Examples

For shortness, we use symbols PΛ and AΛ for denoting PΛ(X) and AΛ(X), respec-

tively, in this section.

4.1 Bootstrap moments of sample correlation coefficient

The sample correlation coefficient r, based on independent bivariate observations

X = (x1, . . . , xn) =
(
(x11, x12)T , . . . , (xn1, xn2)T

)
from a non-degenerate population F having finite moments of requisite order and its boot-

strap version r∗ are defined as

r =
s12(X)√

s11(X)s22(X)
, r∗ =

s12(Y )√
s11(Y )s22(Y )

,

respectively, where

s11(X) =
1
n

n∑
i=1

x2
i1 −

(
1
n

n∑
i=1

xi1

)2

=
1
n

P[
2
0

] − 1
n2

P[
1
0

1
0

] ,

s22(X) =
1
n

n∑
i=1

x2
i2 −

(
1
n

n∑
i=1

xi2

)2

=
1
n

P[
0
2

] − 1
n2

P[
0
1

0
1

] , (11)

s12(X) =
1
n

n∑
i=1

xi1xi2 −

(
1
n

n∑
i=1

xi1

)(
1
n

n∑
i=1

xi2

)

=
1
n

P[
1
1

] − 1
n2

P[
1
0

0
1

] .

We note that the statistic r is the maximum likelihood estimator of the population corre-

lation coefficient of ρ, if F is a bivariate normal distribution.

Our first goal in this example is to obtain

EF EF∗
(√

n(r∗ − r)
)

= EF EF∗
(√

n(r∗ − ρ)
)
− EF

(√
n(r − ρ)

)
,

where the second term EF

(√
n(r−ρ)

)
has been already discussed in bibliographies includ-

ing Nakagawa and Niki [13]. For expanding the first term as a power series in terms of

1/
√

n, we introduce the following three auxiliary variables defined as

w∗
20 =

√
n
(
s11(Y ) − κ20

)
κ20

∼ O(1), w∗
02 =

√
n
(
s22(Y ) − κ02

)
κ02

∼ O(1),

w∗
11 =

√
n
(
s12(Y ) − κ11

)
κ11

∼ O(1), (12)
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to obtain

√
n(r∗ − ρ) ∼ ρ

{(
−1

2
w∗

20 + w∗
11 −

1
2

w∗
02

)
+

1√
n

(
3
8

w∗
20

2 − 1
2

w∗
20 w∗

11 +
1
4

w∗
20 w∗

02 −
1
2

w∗
11 w∗

02 +
3
8

w∗
02

2

)
+

1
n

(
− 5

16
w∗

20
3 +

3
8

w∗
20

2 w∗
11 −

3
16

w∗
20

2 w∗
02 +

1
4

w∗
20 w∗

11 w∗
02

− 3
16

w∗
20 w∗

02
2 +

3
8

w∗
02

2 w∗
11 −

5
16

w∗
02

3

)}
+ O(n− 3

2 ),

where κij (i, j = 0, 1, 2, . . .) denote the (product) cumulants of F .

The expectation of this asymptotic expansion with respect to F ∗ is given by using

Algorithm 2 with p = 2 and k = 1:

EF∗
(√

n(r∗ − ρ)
)

=
1√
n
· 1
√

κ20κ02

(
−2κ11

κ02
P[

0
2

] + 4P[
1
1

] − 2 κ11

κ20
P[

2
0

])
+ O(n− 3

2 )

Finally, Algorithm 3 and the relations between moments and cumulants yield

EF EF∗
(√

n(r∗ − ρ)
)

=
1√
n
· 1
√

κ20κ02

(
−κ11 +

3
4

κ−2
02 κ04κ11 + κ−1

20 κ−1
02 κ3

11

− κ−1
02 κ13 +

1
2

κ−1
20 κ−1

02 κ11κ22 − κ−1
20 κ31 +

3
4

κ−2
20 κ11κ40

)
+ O(n− 3

2 ),

which gives

EF EF∗
(√

n(r∗ − r)
)

= EF

(√
n(r − ρ)

)
+ O(n− 3

2 )

showing that the bootstrap bias correction works well, at least, of O
(
n−1

)
.

The expectation of the second moment with respect to F ∗ and F is expanded in similar

fashion as

EF EF∗
(
n(r∗ − r)2

)
= a20 +

a22

n
+ O(n−2), (13)

where

a20 =
1

κ20κ02

(
κ02 κ20 + κ22 − κ11 κ13 κ−1

02 − 2κ2
11 +

1
4
κ04 κ−2

02 κ2
11 +

1
4
κ40 κ2

11 κ−2
20

− κ11 κ31 κ−1
20 +

1
2
κ22 κ−1

02 κ2
11 κ−1

20 + κ−1
02 κ4

11 κ−1
20

)
,

a22 =
1

κ20κ02

(
− 3κ02 κ20 −

43
2

κ22 −
69
8

κ04 κ11 κ13 κ−3
02 + 20κ03 κ11 κ12 κ−2

02

+
15
4

κ11 κ15 κ−2
02 +

9
4

κ04 κ22 κ−2
02 +

49
2

κ11 κ13 κ−1
02 − 3

4
κ04 κ20 κ−1

02 − 7κ03 κ21 κ−1
02
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− 3 κ24 κ−1
02 +

79
4

κ2
11 −

9
8

κ06 κ−3
02 κ2

11 −
53
8

κ04 κ−2
02 κ2

11 − 6κ−3
02 κ2

03 κ2
11

+
183
64

κ−4
02 κ2

04 κ2
11 − 9 κ−1

02 κ2
12 + 4 κ−2

02 κ2
13 −

69
8

κ11 κ31 κ40 κ−3
20

− 9
8

κ60 κ2
11 κ−3

20 +
69
16

κ22 κ40 κ−1
02 κ2

11 κ−3
20 +

69
8

κ40 κ−1
02 κ4

11 κ−3
20

+ 20κ11 κ21 κ30 κ−2
20 +

9
4

κ22 κ40 κ−2
20 +

15
4

κ11 κ51 κ−2
20 − 29

4
κ11 κ22 κ31 κ−1

02 κ−2
20

− 25
8

κ11 κ13 κ40 κ−
021κ−2

20 − 53
8

κ40 κ2
11 κ−2

20 +
39
32

κ04 κ40 κ−2
02 κ2

11 κ−2
20

− 2 κ12 κ30 κ−1
02 κ2

11 κ−2
20 − 15

8
κ42 κ−1

02 κ2
11 κ−2

20 − 59
2

κ31 κ−1
02 κ3

11 κ−2
20

+
55
4

κ22 κ−2
02 κ4

11 κ−2
20 +

55
4

κ−2
02 κ6

11 κ−2
20 − 7κ12 κ30 κ−1

20 +
49
2

κ11 κ31 κ−1
20

− 3
4

κ02 κ40 κ−1
20 − 3κ42 κ−1

20 − 29
4

κ11 κ13 κ22 κ−2
02 κ−1

20 − 25
8

κ04 κ11 κ31 κ−2
02 κ−1

20

+ 23κ11 κ12 κ21 κ−1
02 κ−1

20 + κ03 κ11 κ30 κ−1
02 κ−1

20 + 4κ13 κ31 κ−1
02 κ−1

20

+
9
2

κ11 κ33 κ−1
02 κ−1

20 +
69
16

κ04 κ22 κ−3
02 κ2

11 κ−1
20 − 2 κ03 κ21 κ−2

02 κ2
11 κ−1

20

− 15
8

κ24 κ−2
02 κ2

11 κ−1
20 +

61
4

κ22 κ−1
02 κ2

11 κ−1
20 − 59

2
κ13 κ−2

02 κ3
11 κ−1

20

+
69
8

κ04 κ−3
02 κ4

11 κ−1
20 − 61

2
κ−1

02 κ4
11 κ−1

20 − 8κ−2
02 κ2

11 κ12
2 κ−1

20

− 8 κ−1
02 κ2

11 κ−2
20 κ21

2 − 9κ−1
20 κ21

2 +
55
16

κ−2
02 κ2

11 κ−2
20 κ22

2 +
5
2

κ−1
02 κ−1

20 κ22
2

− 6 κ2
11 κ−3

20 κ30
2 + 4 κ−2

20 κ31
2 +

183
64

κ2
11 κ−4

20 κ40
2

)
. (14)

Nakagawa and Niki [13] have given an expansion for EF

(
n(r − ρ)2

)
as in the form that

EF

(
n(r − ρ)2

)
= a′

20 +
a′
22

n
+ O(n−2).

Comparing the equation (14) with their results, we have a20 = a′
20 and a22 6= a′

22.

4.2 Bootstrap moments of sample regression coefficient

Let b and b∗ denote the sample regression coefficient and its bootstrap version for the

population regression coefficient β, respectively:

b =
s12(X)
s11(X)

, b∗ =
s12(Y )
s11(Y )

,

where s11(X) and s12(X) are defined in (11). By using auxiliary variables w∗
20 and w∗

11 in

(12), we have the asymptotic expansion

√
n (b∗ − β) ∼ β

{(
w∗

11 − w∗
20

)
+

1√
n

(
− w∗

11w
∗
20 + w∗

20
2) +

1
n

(
w∗

11w
∗
20

2 − w∗
20

3)
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+
1

n
√

n

(
w∗

20
4 − w∗

20
3w∗

11

)}
+ O(n−2).

The expectations for the first two bootstrap moments of b∗ are obtained, by utilizing

Algorithm 2 and Algorithm 3, as follows.

EF EF∗
(√

n(b∗ − b)
)

=
c11√

n
+

c13

n
√

n
+ O(n− 5

2 ),

EF EF∗
(
n(b∗ − b)2

)
= c20 +

c22

n
+ O(n−2), (15)

where

c11 = κ−3
20

(
κ40κ11 − κ31κ20

)
,

c13 = κ−5
20

(
− 4κ60κ11κ20 + 4κ51κ

2
20 + 9κ2

40κ11 − 9κ40κ31κ20 − 17κ40κ11κ
2
20

+ 17κ31κ
3
20 − 22κ2

30κ11κ20 + 22κ30κ21κ
2
20

)
,

c20 = κ−4
20

(
− 2κ11 κ20 κ31 + κ40 κ11

2 + κ22 κ20
2 − κ11

2 κ20
2 + κ02 κ20

3

)
,

c22 = κ−6
20

(
− 26κ11 κ20 κ31 κ40 − 3 κ20 κ60 κ11

2 + 28κ11 κ21 κ30 κ20
2 + 4κ22 κ40 κ20

2

+ 6 κ11 κ51 κ20
2 − 8κ40 κ11

2 κ20
2 − 7κ12 κ30 κ20

3 + 14 κ11 κ31 κ20
3 + κ02 κ40 κ20

3

− 3κ42 κ20
3 − 7κ22 κ20

4 − 3κ11
2 κ20

4 + 3κ02 κ20
5 − 7κ20

3 κ21
2 − 14 κ20 κ11

2 κ30
2

+ 9 κ20
2 κ31

2 + 13κ11
2 κ40

2

)
.

If we write the results due to Nakagawa and Niki [12] as

EF

(√
n(b − β)

)
=

c′11√
n

+
c′13

n
√

n
+ O(n− 5

2 ),

EF

(
n(b − β)2

)
= c′20 +

c′22
n

+ O(n−2), (16)

then we have

c11 = c′11, c13 6= c′13; c20 = c′20, c22 6= c′22.
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