Algorithms for the crystal structure on K-hives of type A

Shota Narisawa ${ }^{\text {® }}$
Graduate school of science, Toho University

Kiyoshi Shirayanagi ${ }^{\text {T}}$
Faculty of science, Toho University

(Received 14/November/2022 Accepted 28/February/2023)

Abstract

A combinatorial object called K-hives realizes the crystal basis of an irreducible highest weight module over the quantized enveloping algebra of type A. In this paper, we give a set of algorithms to compute the crystal structure on K-hives. By implementing these algorithms, we created a new package called khive-crystal in Python, which incorporates all the functions needed to realize crystal structures. We give some examples of performing this package.

Keywords: K-hive, crystal bases, highest weight modules, quantized enveloping algebra, tensor product decomposition

1 Introduction

For a symmetrizable Kac-Moody algebra \mathfrak{g}, the quantized enveloping algebra $U_{q}(\mathfrak{g})$ is determined with an indeterminate q, see [[, , 4]. Certain modules over $U_{q}(\mathfrak{g})$ have crystal bases, which can be viewed as its basis at $q=0$, and it enables us to understand the representation theory of $U_{q}(\mathfrak{g})$ from combinatorics. For example, the irreducible highest weight modules over the quantized enveloping algebra of a simple Lie algebra have a crystal basis and are realized by Young tableaux []]. Then the action of $U_{q}(\mathfrak{g})$ on the highest weight modules can be computed by Young tableaux combinatorics. It also means that other problems in representation theory, such as the tensor product decomposition, can be approached by the combinatorics.

In a previous study, we gave a crystal structure on a set of K-hives and showed that the crystal of K-hives is isomorphic to the crystal basis of an irreducible highest weight module over a quantized enveloping algebra of type A. K-hive is a labeling of vertices of an equilateral triangular graph introduced in [8, [12, []]. K-hives have correspondence with semistandard Young tableaux or Gelfand-Tsetlin patterns, and then, for example, they can be applied to compute (Stretched) Kostka coefficients. Also, there is another special kind of hive called LR-hives, which corresponds to Littlewood-Richardson tableaux and has application to Littlewood-Richardson coefficients. For example, in [16], the symmetry of the Littlewood-Richardson coefficients is proved

[^0]by LR-hives. Therefore, hives give a new perspective on problem solving in combinatorial representation theory.

In this paper, we give a set of algorithms for computing the crystal structure given in [114] on K-hives, and some examples of executing these algorithms using the first author's original system. The system is implemented as a Python package named khive-crystal. The source code is available in [13].

This paper is organized as follows. In Section 凹, we review basic notions and notations of quantized enveloping algebras, crystals, and K-hives. In Section [], we give a set of algorithms for the crystal structure on a set of K-hives using two approaches. One approach can be obtained by considering a set of K-hives determined by a dominant weight as a subset of a tensor product of sets of K-hives determined by fundamental weights. The other approach is based on an combinatorial description of the crystal structure on K-hives. In Section [5, we give concluding remarks.

2 Preliminaries

2.1 Quantized Enveloping Algebras

In this subsection, we review the definition of quantized enveloping algebras of type A, see [3] for more details.

Let $\mathfrak{s l}_{n}$ be the Lie algebra of type A_{n-1} over \mathbb{C} with Cartan subalgebra \mathfrak{b} consisting of traceless diagonal matrices. Let $I=\{1,2, \ldots, n-1\}$ be an index set. Let $A=\left(a_{i j}\right)_{i, j \in I}$ be the Cartan matrix of type A_{n-1}. For $i \in I$, define the liner map $\epsilon_{i}: \mathfrak{h} \rightarrow \mathbb{C}$ by $\epsilon_{i}(h)=\lambda_{i}$, where $h=\operatorname{diag}\left(\lambda_{j} \mid j \in\right.$ $I) \in \mathfrak{h}$. For $i \in I$, set $\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}$. Let $\Pi=\left\{\alpha_{i}\right\}_{i \in I} \subset \mathfrak{h}^{*}$ be simple roots and $\Pi^{\vee}=\left\{h_{i}\right\}_{i \in I} \subset \mathfrak{h}$ be simple coroots. Let Δ be the root system of $\mathfrak{s l}_{n}$. Set $\Delta^{+}=\Delta \cap \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_{i}$ and $\Delta^{-}=\Delta-\Delta^{+}$. For all $i \in I$, let $\Lambda_{i}=\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{i} \in \mathfrak{h}^{*}$ be an i-th fundamental weight. Set $P=\bigoplus_{i \in I} \mathbb{Z} \Lambda_{i}$, $P^{+}=\bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \Lambda_{i}$, and $P^{\vee}=\bigoplus_{i \in I} \mathbb{Z} h_{i}$. We call P the weight lattice, P^{+}the set of dominant integral weights, and P^{\vee} the dual weight lattice, respectively. Using this notation, the Cartan datum for $\mathfrak{s l}_{n}$ is defined as $\left(A, \Pi, \Pi^{\vee}, P, P^{\vee}\right)$.

Let q be an indeterminate. Let $U_{q}\left(\mathfrak{s l}_{n}\right)$ be the quantized enveloping algebra over $\mathbb{Q}(q)$ associated with the Cartan datum $\left(A, \Pi, \Pi^{\vee}, P, P^{\vee}\right)$. Let $V(\lambda)$ be the irreducible highest weight module of weight $\lambda \in P^{+}$with the highest weight vector v_{λ} over $U_{q}\left(\mathfrak{s l}_{n}\right)$.

2.2 Crystals

In this subsection, we review the notion of crystals, see $[3,5,6]$ for more details.

Definition 1

A crystal associated with Cartan datum $\left(A, \Pi, \Pi^{\vee}, P, P^{\vee}\right)$ is a set B together with the maps $\mathrm{wt}: B \rightarrow P, e_{i}, f_{i}: B \rightarrow B \cup\{0\}$, and $\varepsilon_{i}, \varphi_{i}: B \rightarrow \mathbb{Z} \cup\{-\infty\}(i \in I)$ satisfying the following properties.

1. $\varphi_{i}(b)=\varepsilon_{i}(b)+\mathrm{wt}(b)\left(h_{i}\right)$ for $i \in I$,
2. $\operatorname{wt}\left(e_{i} b\right)=\mathrm{wt}(b)+\alpha_{i}$ if $e_{i} b \in B$,
3. $\operatorname{wt}\left(f_{i} b\right)=\operatorname{wt}(b)-\alpha_{i}$ if $e_{i} b \in B$,
4. $\varepsilon_{i}\left(e_{i} b\right)=\varepsilon_{i}(b)-1, \varphi_{i}\left(e_{i} b\right)=\varphi_{i}(b)+1$ if $e_{i} b \in B$,
5. $\varepsilon_{i}\left(f_{i} b\right)=\varepsilon_{i}(b)+1, \varphi_{i}\left(f_{i} b\right)=\varphi_{i}(b)-1$ if $f_{i} b \in B$,
6. $f_{i} b=b^{\prime}$ if and only if $b=e_{i} b^{\prime}$ for $b, b^{\prime} \in B, i \in I$,
7. if $\varphi_{i}(b)=-\infty$, then $e_{i} b=f_{i} b=0$.

Since $\left(A, \Pi, \Pi^{\vee}, P, P^{\vee}\right)$ is the Cartan datum of type A_{n-1}, a crystal associated with $\left(A, \Pi, \Pi^{\vee}, P, P^{\vee}\right)$ is also called a $U_{q}\left(\mathfrak{s l}_{n}\right)$-crystal.

A $U_{q}\left(\mathfrak{S l}_{n}\right)$-crystal can be thought of as a colored-oriented graph in the following manner.

Definition 2

Let B be a $U_{q}\left(\mathfrak{s l}_{n}\right)$-crystal. A crystal graph of B is an I-colored oriented graph whose vertices are elements of B and the arrows are written as $b \xrightarrow{i} b^{\prime}$ when $f_{i} b=b^{\prime}$ for $i \in I$ and $b, b^{\prime} \in B$.

The tensor product of crystals is defined as follows.

Definition 3

Let B_{1} and B_{2} be crystals. The tensor product $B_{1} \otimes B_{2}$ of B_{1} and B_{2} is defined to be the set $B_{1} \times B_{2}$ whose crystal structure is defined by

1. $\mathrm{wt}\left(b_{1} \otimes b_{2}\right)=\mathrm{wt}\left(b_{1}\right)+\mathrm{wt}\left(b_{2}\right)$,
2. $\varepsilon_{i}\left(b_{1} \otimes b_{2}\right)=\max \left(\varepsilon_{i}\left(b_{1}\right), \varepsilon_{i}\left(b_{2}\right)-\mathrm{wt}\left(b_{1}\right)\left(h_{i}\right)\right)$,
3. $\varphi\left(b_{1} \otimes b_{2}\right)=\max \left(\varphi\left(b_{2}\right), \varphi\left(b_{1}\right)+\operatorname{wt}\left(b_{2}\right)\left(h_{i}\right)\right)$,
4. $e_{i}\left(b_{1} \otimes b_{2}\right)= \begin{cases}e_{i} b_{1} \otimes b_{2} & \varphi_{i}\left(b_{1}\right) \geq \varepsilon_{i}\left(b_{2}\right), \\ b_{1} \otimes e_{i} b_{2} & \varphi_{i}\left(b_{1}\right)<\varepsilon_{i}\left(b_{2}\right),\end{cases}$
5. $f_{i}\left(b_{1} \otimes b_{2}\right)= \begin{cases}f_{i} b_{1} \otimes b_{2} & \varphi_{i}\left(b_{1}\right)>\varepsilon_{i}\left(b_{2}\right), \\ b_{1} \otimes f_{i} b_{2} & \varphi_{i}\left(b_{1}\right) \leq \varepsilon_{i}\left(b_{2}\right) .\end{cases}$

In general, we have the following proposition([], Proposition 2.1.1]).

Proposition 4

For $j \in\{1, \ldots, N\}$, let B_{j} be a $U_{q}\left(\mathfrak{s I}_{n}\right)$-crystal. Fix $i \in I$. Take $b_{j} \in B_{j}(j=1, \ldots, N)$, and we set

$$
a_{k}=\sum_{1 \leq j<k}\left(\varphi_{i}\left(b_{j}\right)-\varepsilon_{i}\left(b_{j+1}\right)\right) \quad 1 \leq k \leq N .
$$

In particular, we set $a_{1}=0$. Then we have

1. $\varepsilon_{i}\left(b_{1} \otimes \cdots \otimes b_{N}\right)=\max \left\{\sum_{1 \leq j \leq k} \varepsilon_{i}\left(b_{j}\right)-\sum_{1 \leq j<k} \varphi_{i}\left(b_{j}\right) \mid 1 \leq k \leq N\right\}$,
2. $\varphi_{i}\left(b_{1} \otimes \cdots \otimes b_{N}\right)=\max \left\{\varphi_{i}\left(b_{N}\right)+\sum_{k \leq j<N}\left(\varphi_{i}\left(b_{j}\right)-\varepsilon_{i}\left(b_{j+1}\right)\right) \mid 1 \leq k \leq N\right\}$,
3. If k is the largest element such that $a_{k}=\min \left\{a_{j} \mid 1 \leq j \leq N\right\}$ then, we have

$$
f_{i}\left(b_{1} \otimes \cdots \otimes b_{N}\right)=b_{1} \otimes \cdots \otimes b_{k-1} \otimes f_{i} b_{k} \otimes b_{k+1} \otimes \cdots \otimes b_{N}
$$

4. If k is the smallest element such that $a_{k}=\min \left\{a_{j} \mid 1 \leq j \leq N\right\}$ then, we have

$$
e_{i}\left(b_{1} \otimes \cdots \otimes b_{N}\right)=b_{1} \otimes \cdots \otimes b_{k-1} \otimes e_{i} b_{k} \otimes b_{k+1} \otimes \cdots \otimes b_{N}
$$

An isomorphism of crystals is defined as a bijection preserving crystal structure. Later we will also construct a crystal embedding as defined in the following.

Definition 5

Let B_{1}, B_{2} be $U_{q}\left(\mathfrak{s l}_{n}\right)$-crystals. A crystal morphism $\Psi: B_{1} \rightarrow B_{2}$ is a map $\Psi: B_{1} \cup\{0\} \rightarrow B_{2} \cup\{0\}$ satisfying

1. $\operatorname{wt}(\Psi(b))=\operatorname{wt}(b), \varepsilon_{i}(\Psi(b))=\varepsilon_{i}(b), \varphi_{i}(\Psi(b))=\varphi_{i}(b)$ if $b \in B_{1}, \Psi(b) \in B_{2}$,
2. $f_{i} \Psi(b)=\Psi\left(f_{i} b\right), e_{i} \Psi(b)=\Psi\left(e_{i} b\right)$ if $\Psi(b), \Psi\left(e_{i} b\right), \Psi\left(f_{i} b\right) \in B_{2}$ for $b \in B_{1}$,
3. $\Psi(0)=0$.

A morphism $\Psi: B_{1} \rightarrow B_{2}$ is called an embedding if Ψ induces an injection $B_{1} \cup\{0\} \rightarrow B_{2} \cup\{0\}$. A morphism $\Psi: B_{1} \rightarrow B_{2}$ is called an isomorphism if Ψ induces a bijection $B_{1} \cup\{0\} \rightarrow B_{2} \cup\{0\}$. We write $B_{1} \cong B_{2}$ if there exists an isomorphism $\Psi: B_{1} \rightarrow B_{2}$.

2.3 K-hives

Hives are introduced by T.Tao and A.Knutson [IT2, [1] as the labeling of the vertices of an equilateral triangular graph. There are three forms of hives, one of which, the upright gradient representation, is used in this paper. See [16] for more details. In this paper, we use K-hives, which are a special kind of hives [8$]$.

Let $n \in \mathbb{Z}_{\geq 0}$ and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. λ is called a composition of $m \in \mathbb{Z}_{\geq 0}$ if $\lambda_{1}+\cdots+\lambda_{n}=m$. A composition λ is called a partition of m if $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$. If λ is a partition of m such that $\lambda_{i}=k$ for $1 \leq i \leq l \leq n$ and $\lambda_{i}=0$ for $l<i \leq n$, then we write λ as $\left(k^{m}\right)$. In particular, we simply write $\left(0^{n}\right)$ as 0 if there is no fear of confusion. In addition, $\ell(\lambda)$ denotes the length of λ.

For $\lambda \in P^{+}$, there exists a partition $\tilde{\lambda}$ such that $\tilde{\lambda}_{1} \epsilon_{1}+\tilde{\lambda}_{2} \epsilon_{2}+\cdots+\tilde{\lambda}_{n} \epsilon_{n}=\lambda$. Similarly, for $\mu \in P$, there exists a composition $\tilde{\mu}$ such that $\tilde{\mu}_{1} \epsilon_{1}+\tilde{\mu}_{2} \epsilon_{2}+\cdots+\tilde{\mu}_{n} \epsilon_{n}=\mu$. Note that a composition $\left(\tilde{\mu}_{1}+k, \ldots, \tilde{\mu}_{n}+k\right)$ also represents $\mu \in P$ since $\epsilon_{1}+\cdots+\epsilon_{n}=0$.

Let $\xi \in P$ be a weight of $V(\lambda)$. Then ξ is written as $\lambda-\sum_{i \in I} k_{i} \alpha_{i} \in P\left(k_{i} \in \mathbb{Z}\right)$. For ξ, there exists a composition $\tilde{\xi}$ such that $\tilde{\xi}_{1} \epsilon_{1}+\tilde{\xi}_{2} \epsilon_{2}+\cdots+\tilde{\xi}_{n} \epsilon_{n}=\xi$ and $\sum_{k=1}^{n} \tilde{\xi}_{k}=\sum_{k=1}^{n} \tilde{\lambda}_{k}$.

In the following, a partition (resp. composition) $\tilde{\lambda}$ representing a dominant weight (resp. an integral weight) λ is also denoted by λ by abuse of notation.

Definition 6

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right), \gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n}$. Let $\left(U_{i j}\right)_{1 \leq i<j \leq n} \in \mathbb{Z}^{n(n-1) / 2}$. An integerhive of size n in upright gradient representation ([I6]) is a tuple $\left(\alpha, \beta, \gamma,\left(U_{i j}\right)_{1 \leq i<j \leq n}\right)$ that satisfies

$$
\begin{equation*}
\beta_{k}=\left(\gamma_{k}+\sum_{i=1}^{k-1} U_{i k}\right)+\left(\alpha_{k}-\sum_{j=k+1}^{n} U_{k j}\right) . \tag{1}
\end{equation*}
$$

Remark 7

In [12, [1], 16], the term hive refers to a hive with additional inequality conditions called the rhombus inequalities. We rather follow the terminology of [$8, \underline{q}, \boxed{\square}]$.

An integer hive in upright gradient representation is illustrated as the labeling of an equilateral triangular graph with boundary edge labels and rhombi as shown in Fig. IT.

Set $[n]=\{1,2, \ldots, n\}$. In the following, for $i \in[n]$, set

$$
\begin{equation*}
U_{i i}=\beta_{i}-\sum_{k=1}^{i-1} U_{k i} \tag{2}
\end{equation*}
$$

Fig. 1: Integer hive graph of size 4
and $U_{i j}=0$ if $i>j$ or $j>n$ or $i<1$. Also, for simplicity, we will write $\left(U_{i j}\right)_{1 \leq i<j \leq n}$ as $\left(U_{i j}\right)_{i<j}$. In this paper, we consider a kind of integer hive called a K-hive.

Definition 8

Let $m, n \in \mathbb{Z}_{\geq 0}$. Let $\alpha, \beta, \gamma \in \mathbb{Z}_{\geq 0}^{n}$. For $1 \leq i<j \leq n$, set $L_{i j}=\sum_{k=1}^{j-1} U_{i k}-\sum_{k=1}^{j} U_{i+1, k}$. Then an integer hive in upright gradient representation $H=\left(\alpha, \beta, \gamma,\left(U_{i j}\right)_{i<j}\right)$ is called a K-hive if the following conditions are satisfied

1. α is a partition of m,
2. β is a composition of m,
3. $\gamma=\left(0^{n}\right)$,
4. $U_{i j} \geq 0$ for $1 \leq i<j \leq n$,
5. $L_{i j} \geq 0$ for $1 \leq i<j \leq n$,
6. $\beta_{i} \geq \sum_{k=1}^{i-1} U_{k i}$ for $i \in[n]$.

Let

$$
\mathcal{H}^{(n)}(\alpha, \beta, 0)=\left\{H=\left(\alpha, \beta, 0,\left(U_{i j}\right)_{i<j}\right) \mid H \text { is a } K \text {-hive }\right\} .
$$

Set

$$
\mathbb{H}(\alpha)=\bigcup_{\beta} \mathcal{H}^{(n)}(\alpha, \beta, 0)
$$

where the union runs through all compositions of m.

Remark 9

For $H=\left(\alpha, \beta, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathcal{H}^{(n)}(\alpha, \beta, 0)$, we have

$$
\begin{aligned}
\sum_{k=1}^{n} \beta_{k} & =\sum_{k=1}^{n}\left(\sum_{i=1}^{k-1} U_{i k}+\alpha_{k}-\sum_{j=k+1}^{n} U_{k j}\right) \\
& =\sum_{k=1}^{n} \alpha_{k}
\end{aligned}
$$

Thus, if $\sum_{i=1}^{n} \alpha_{i} \neq \sum_{i=1}^{n} \beta_{i}$, we have $\mathcal{H}^{(n)}(\alpha, \beta, 0)=\varnothing$.

Remark 10

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ be a partition of $m \in \mathbb{Z}_{\geq 0}$. Let $l \in \mathbb{Z}_{\geq 0}$. Set $\alpha^{\prime}=\left(\alpha_{i}+l\right)_{i}$. We know that α and α^{\prime} represent the same dominant weight. We also have that $\mathbb{H}(\alpha) \cong \mathbb{H}\left(\alpha^{\prime}\right)$ as a set. The bijection from $\mathbb{H}(\alpha)$ to $\mathbb{H}\left(\alpha^{\prime}\right)$ is given by the map which maps $\left(\alpha, \beta, 0,\left(U_{i j}\right)_{i<j}\right)$ to $\left(\alpha^{\prime}, \beta^{\prime}, 0,\left(U_{i j}^{\prime}\right)_{i<j}\right)$, where $\beta^{\prime}=\left(\beta_{i}+l\right)_{i}$ and $\left(V_{i j}\right)_{i<j}=\left(U_{i j}\right)_{i<j}$. Note that $V_{i i}=U_{i i}+l$ holds for $i=1,2, \ldots, n-1$.

Remark 11

Let $H \in \mathcal{H}^{(n)}(\alpha, \beta, 0) \subset \mathbb{H}(\alpha)$. In this case, we have $U_{i i}=\alpha_{i}-\sum_{j=i+1}^{n} U_{i j}$ by Definition ([]) (प). Also, we have $U_{i j}=0$ for $j \in[n]$ if $\alpha_{i}=0$ since $U_{k l} \geq 0$ for $1 \leq k \leq l \leq n$.

Example 12

Let $n=4, \lambda=(3,2,1,0)$ and $\mu=(2,3,1,0)$. We have an example of $H \in \mathcal{H}^{(4)}(\lambda, \mu, 0) \subset \mathbb{H}(\lambda)$ as shown in Fig.

Fig. 2: An example of a K-hive

Remark 13

Let $\lambda \in P^{+}$and let $H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda)$. Let T be a Young tableau of shape λ, weight μ, and let $U_{i j}$ be the number of j in i-th row of T. Then, the map that sends H to T is a bijection from $\mathbb{H}(\lambda)$ to the set of semistandard tableaux of shape λ (cf. [G]).

2.4 Crystal Structure on K-hives

In this subsection, we review the crystal structure on $\mathbb{H}(\lambda)$ for $\lambda \in P^{+}$according to [14]. There are two ways to introduce the crystal structure on $\mathbb{H}(\lambda)$. One way is realized by regarding $\mathbb{H}(\lambda)$ as a subset of a tensor product of crystals of the form $\mathbb{H}\left(\Lambda_{k}\right)$. Another way is realized by considering a combinatorial description of the crystal structure.

The following is a technical lemma.

Lemma 14 ([14])

Let $v \in I$ and $H=\left(\Lambda_{v}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{v}\right)$.

1. For all $i \in\{1,2, \ldots, v\}$, there exists a unique $j \in\{i, i+1, \ldots, n\}$ such that $U_{i j}=1$.
2. Fix $j \in I$. If there exists $i, i^{\prime} \in\{1,2, \ldots, j\}$ such that $U_{i j}, U_{i^{\prime} j}>0$, then $i=i^{\prime}$ holds.

We first define the crystal structure on $\mathbb{H}\left(\Lambda_{k}\right)$ for $k \in I$.

Definition 15 ([14])

Let $v \in I$. The maps wt: $\mathbb{H}\left(\Lambda_{v}\right) \rightarrow P, e_{i}, f_{i}: \mathbb{H}\left(\Lambda_{v}\right) \rightarrow \mathbb{H}\left(\Lambda_{v}\right) \cup\{0\}$ and $\varepsilon_{i}, \varphi_{i}: \mathbb{H}\left(\Lambda_{v}\right) \rightarrow \mathbb{Z}_{\geq 0}$ $(i \in I)$ are defined in the following manner. Let $H=\left(\Lambda_{\nu}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{\nu}\right)$.

1. $\mathrm{wt}(H):=\sum_{k=1}^{n-1}\left(\mu_{k}-\mu_{k+1}\right) \Lambda_{k} \in P$,
2. $\varepsilon_{i}(H):=\max \left(\mu_{i+1}-\mu_{i}, 0\right)$,
3. $\varphi_{i}(H):=\max \left(\mu_{i}-\mu_{i+1}, 0\right)$,
4. Set $\mu^{\prime}=\sum_{k=1}^{n} \mu_{k}^{\prime} \epsilon_{k} \in P$ where $\mu_{i}^{\prime}=\mu_{i}+1, \mu_{i+1}^{\prime}=\mu_{i+1}-1$, and $\mu_{k}^{\prime}=\mu_{k}$ for $k \neq i, i+1$. Set $U_{k_{0}, i}^{\prime}=U_{k_{0}, i}+1, U_{k_{0}, i+1}^{\prime}=U_{k_{0}, i+1}-1$ if there exists $k_{0} \in\{1,2, \ldots, i+1\}$ such that $U_{k_{0}, i+1}>0$. Set $U_{k l}^{\prime}=U_{k l}$ if $k \neq k_{0}$ and $l \neq i, i+1$. Then, for $i \in I, e_{i}: \mathbb{H}\left(\Lambda_{v}\right) \rightarrow \mathbb{H}\left(\Lambda_{v}\right) \cup\{0\}$ is defined as follows:

$$
e_{i} H= \begin{cases}\left(\Lambda_{v}, \mu^{\prime}, 0,\left(U_{k l}^{\prime}\right)_{k<l}\right) & \varepsilon_{i}(H)>0 \\ 0 & \varepsilon_{i}(H)=0\end{cases}
$$

5. Set $\mu^{\prime}=\sum_{k=1}^{n} \mu_{k}^{\prime} \epsilon_{k} \in P$ where $\mu_{i}^{\prime}=\mu_{i}-1, \mu_{i+1}^{\prime}=\mu_{i+1}+1$, and $\mu_{k}^{\prime}=\mu_{k}$ for $k \neq i, i+1$. Set $U_{k_{0}, i}^{\prime}=U_{k_{0}, i}-1, U_{k_{0}, i+1}^{\prime}=U_{k_{0}, i+1}+1$ if there exists $k_{0} \in\{1,2, \ldots, i\}$ such that $U_{k_{0}, i}>0$. Set $U_{k l}^{\prime}=U_{k l}$ if $k \neq k_{0}$ and $l \neq i, i+1 . f_{i}: \mathbb{H}\left(\Lambda_{v}\right) \rightarrow \mathbb{H}\left(\Lambda_{v}\right) \cup\{0\}(i \in I)$ is defined as follows:

$$
f_{i} H= \begin{cases}\left(\Lambda_{v}, \mu^{\prime}, 0,\left(U_{k l}^{\prime}\right)_{k<l}\right) & \varphi_{i}(H)>0 \\ 0 & \varphi_{i}(H)=0\end{cases}
$$

Remark 16 ([14])

It follows from Definition (II) that $\mu_{i} \in\{0,1\}$ for all $i \in[n]$ since Λ_{v} corresponds to $\left(1^{k}\right)$. Thus, we have $\varphi_{i}(H), \varepsilon_{i}(H) \in\{0,1\}$. Moreover, the following holds.

$$
\begin{aligned}
& \varphi_{i}(H)= \begin{cases}1 & f_{i} H \neq 0 \\
0 & f_{i} H=0\end{cases} \\
& \varepsilon_{i}(H)= \begin{cases}1 & e_{i} H \neq 0 \\
0 & e_{i} H=0\end{cases}
\end{aligned}
$$

Proposition 17 ([14])

Let $v \in I$. Then $\mathbb{H}\left(\Lambda_{v}\right)$ is a $U_{q}\left(\mathfrak{s l}_{n}\right)$-crystal together with the maps wt, $e_{i}, f_{i}, \varphi_{i}, \varepsilon_{i}$ in Definition [15.

By the map Ψ defined in the following, we regard $\mathbb{H}(\lambda)$ as a subset of a tensor product of crystals of the form $\mathbb{H}\left(\Lambda_{k}\right)$. Then, to define Ψ, we first define a map Ψ_{λ}.

Definition 18 ([14])

Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i} \in P^{+}$. Set $N=\sum_{i \in I} m_{i}$. Let $l_{N}=\max \left\{i \in I \mid m_{i} \neq 0\right\}$. For $H=$ $\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda), H_{N}=\left(\Lambda_{l_{N}}, \mu^{(N)}, 0,\left(U_{i j}^{(N)}\right)_{i<j}\right)$ is defined by

$$
\begin{aligned}
& U_{i j}^{(N)}= \begin{cases}1 & \text { if } j=\min \left\{j \in[n] \mid U_{i j}>0\right\}, \\
0 & \text { otherwise },\end{cases} \\
& \mu_{k}^{(N)}= \begin{cases}1 & \text { if there exists } j \in[n] \text { such that } U_{k j}^{(N)}>0, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

For H and $H_{N}, H^{(N-1)}=\left(\lambda^{(N-1)}, \xi^{(N-1)}, 0,\left(V_{i j}^{(N-1)}\right)_{i<j}\right)$ is defined by $\lambda^{(N-1)}=\lambda-\Lambda_{l_{N}}, \xi^{(N-1)}=$ $\mu-\mu^{(N)}$, and $V_{i j}^{(N-1)}=U_{i j}-U_{i j}^{(N)}(1 \leq i<j \leq n)$.

Lemma 19 ([14])

Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i} \in P^{+}$. Set $N=\sum_{i \in I} m_{i}$. Let $H \in \mathbb{H}(\lambda)$. Let H_{N} and $H^{(N-1)}$ in Definition $\mathbb{1 8}$. Then, $H_{N} \in \mathbb{H}\left(\Lambda_{l_{N}}\right)$ and $H^{(N-1)} \in \mathbb{H}\left(\lambda^{(N-1)}\right)$ hold.

Definition 20 ([14])
Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i} \in P^{+}$. Set $N=\sum_{i \in I} m_{i}$. For each $H \in \mathbb{H}(\lambda)$, take $H_{N} \in \mathbb{H}\left(\Lambda_{l_{N}}\right)$ and $H^{(N-1)} \in \mathbb{H}\left(\lambda^{(N-1)}\right)$ as in Definition $\mathbb{1 8}$. Then define the map $\Psi_{\lambda}: \mathbb{H}(\lambda) \rightarrow \mathbb{H}\left(\lambda^{(N-1)}\right) \times \mathbb{H}\left(\Lambda_{l_{N}}\right)$ by $\Psi_{\lambda}(H)=H^{(N-1)} \times H_{N}$.

Lemma 21 ([14])

The map Ψ_{λ} is an injection.
By applying Ψ_{λ} repeatedly, we have an injection from $\mathbb{H}(\lambda)$ to $\bigotimes_{k} \mathbb{H}\left(\Lambda_{k}\right)$.

Proposition 22 ([14])

Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i} \in P^{+}$. Then there exists an injection

$$
\Psi: \mathbb{H}(\lambda) \rightarrow \bigotimes_{i \in I} \mathbb{H}\left(\Lambda_{i}\right)^{\otimes m_{i}}
$$

To define the crystal structure on $\mathbb{H}(\lambda)$ for $\lambda \in P^{+}$so that Ψ is a crystal morphism, we need to show that an image of Ψ is stable under the action of $e_{i}, f_{i}(i \in I)$. To show this, we start by examining an image of Ψ.

Lemma 23

Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i} \in P^{+}$. Set $N=\sum_{i \in I} m_{i}$. Let $H \in \mathbb{H}(\lambda)$. Let $\Psi(H)=H_{1} \otimes \cdots \otimes H_{N}$, where $H_{k}=\left(\Lambda_{l_{k}}, \mu^{(k)}, 0,\left(U_{i j}^{(k)}\right)_{i<j}\right)(k=1, \ldots, N)$. For $k \in\{1, \ldots, N\}$ and $i \in[n]$, if there exists $j \in[n]$ such that $U_{i, j}^{(k)}>0$, then set $j_{i, k}$ to its j, otherwise set $j_{i, k}$ to 0 . Suppose that $j_{i, k}>0$ for some $k \in\{1, \ldots, N\}$ and $i \in[n]$. Then we have $j_{i, k^{\prime}} \geq j_{i, k}$ if $k \geq k^{\prime}$.
Proof Set $H^{(N)}=H$ and $\lambda^{(N)}=\lambda$. By Definition [8, for $m=1,2, \ldots, N$ there exists $H_{m} \in$ $\mathbb{H}\left(\Lambda_{l_{m}}\right)$ and $H^{(m-1)} \in \mathbb{H}\left(\lambda^{(m-1)}\right)$ such that

$$
\Psi_{\lambda^{(m)}}\left(H^{(m)}\right)=H^{(m-1)} \otimes H_{m} .
$$

For $m=1,2, \ldots, N$, let $H^{(m)}=\left(\lambda^{(m)}, \xi^{(m)}, 0,\left(V_{i j}^{(m)}\right)_{i<j}\right)$. Fix $k \in\{1,2, \ldots, N\}$. It follows from the definition of Ψ and $\Psi_{\lambda}\left(\lambda \in P^{+}\right)$that

$$
V_{i j}^{(k)}=U_{i j}^{(1)}+\cdots+U_{i j}^{(k)} \quad(1 \leq i<j \leq n) .
$$

Then, by the definition of $\Psi_{\left.\lambda^{k}\right)}$,

$$
U_{i j}^{(k)}= \begin{cases}1 & j=\min \left\{j \in[n] \mid V_{i j}^{(k)}>0\right\} \\ 0 & \text { else. }\end{cases}
$$

This means that for $1 \leq k^{\prime} \leq k \leq N$

$$
\begin{aligned}
j_{i, k} & =\min \left\{j \in[n] \mid U_{i j}^{(1)}+\cdots+U_{i j}^{(k)}>0\right\} \\
& \leq \min \left\{j \in[n] \mid U_{i j}^{(1)}+\cdots+U_{i j}^{\left(k^{\prime}\right)}>0\right\} \\
& =j_{i, k^{\prime}} .
\end{aligned}
$$

Remark 24

It follows from Lemma 23] that

$$
\begin{aligned}
j_{i, k} & =\min \left\{j \in[n] \mid U_{i j}^{(l)}>0, l=1, \ldots, k\right\} \\
& =\max \left\{j \in[n] \mid U_{i j}^{(l)}>0, l=k, \ldots, N\right\} .
\end{aligned}
$$

Proposition 25

Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i}=\sum_{i \in I} \lambda_{i} \epsilon_{i} \in P^{+}$. Set $N=\sum_{i \in I} m_{i}$. Then,

$$
\begin{equation*}
\Psi(\mathbb{H}(\lambda))=\left\{H_{1} \otimes \cdots \otimes H_{N} \in \bigotimes_{k=1}^{N} \mathbb{H}\left(\Lambda_{l_{k}}\right) \mid j_{i, \lambda_{N+1-i}} \geq j_{i, \lambda_{N+1-i}+1} \geq \cdots \geq j_{i, N} \text { for all } i \in I\right\}, \tag{3}
\end{equation*}
$$

where $j_{i, k}(i \in I, k \in\{1, \ldots, N\})$ is defined in Lemma 23.
Proof Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i}=\sum_{i \in I} \lambda_{i} \epsilon_{i} \in P^{+}$. Set \mathcal{F} to the right set of (Bl)).
First, we show $\Psi(\mathbb{H}(\lambda)) \subset \mathcal{F}$. Let $H=H_{1} \otimes \cdots \otimes H_{N} \in \Psi(\mathbb{H}(\lambda))$, where $H_{k} \in \mathbb{H}\left(\Lambda_{l_{k}}\right)$ for $k=1,2, \ldots, N$. We know $\lambda_{i}=m_{i}+m_{i+1}+\cdots+m_{n-1}$ for $i \in I$. Then by the construction of Ψ, $\Lambda_{l_{l_{N+1-i}}}=\Lambda_{N+1-i}$. By Lemma [4], $j_{i, \lambda_{N+1-i}}>0$ holds. By Lemma [23, $j_{i, \lambda_{N+1-i}} \geq j_{i, \lambda_{N+1-i}+1} \geq \cdots \geq$ $j_{i, N}$ holds. Thus, $H \in F$ holds.

Next, we show $\mathcal{F} \subset \mathbb{H}(\lambda)$. Let $H=H_{1} \otimes \cdots \otimes H_{N} \in \bigotimes_{k=1}^{N} \mathbb{H}\left(\Lambda_{l_{k}}\right)$, where $H_{k}=\left(\Lambda_{l k}, \mu^{(k)}, 0,\left(U_{i j}^{(k)}\right)_{i<j}\right)$ for $k=1,2, \ldots, N$. Let $\tilde{H}=\left(\tilde{\lambda}, \tilde{\mu}, 0,\left(\tilde{U}_{i j}\right)_{i<j}\right)$, where $\tilde{\lambda}=\sum_{k=1}^{N} \Lambda_{l_{k}}, \tilde{\mu}=\sum_{k=1}^{N} \mu^{(k)}$, and $\tilde{U}_{i j}=\sum_{k=1}^{N} U_{i j}^{(k)}(1 \leq i<j \leq n)$. Then we can check $\tilde{H} \in \mathbb{H}(\lambda)$ as follows. For $i \in I$,

$$
\begin{aligned}
\tilde{\mu}_{i} & =\sum_{k=1}^{N} \mu_{i}^{(k)} \\
& =\sum_{k=1}^{N}\left(\sum_{l=1}^{i-1} U_{l i}^{(k)}+\left(\left(\Lambda_{l_{k}}\right)_{i}-\sum_{l=i+1}^{n} U_{i l}^{(k)}\right)\right) \\
& =\sum_{l=1}^{i-1} \tilde{U}_{l i}^{(k)}+\left(\tilde{\lambda}_{i}^{(k)}-\sum_{l=i+1}^{n} \tilde{U}_{i l}^{(k)}\right) .
\end{aligned}
$$

Then \tilde{H} is an integer hive. $\tilde{\lambda} \in P^{+}, \tilde{\mu} \in P, \sum_{i \in I} \tilde{\lambda}_{i}=\sum_{i \in I} \tilde{\mu}_{i}$, and $\tilde{U}_{i j} \geq 0(1 \leq i<j \leq n)$ immediately hold from the definition of \tilde{H} and $H_{k} \in \mathbb{H}\left(\Lambda_{l_{k}}\right)$. For $1 \leq i<j \leq n$,

$$
\begin{aligned}
\tilde{L}_{i j} & =\sum_{k=1}^{j-1} \tilde{U}_{i k}-\sum_{k=1}^{j} \tilde{U}_{i+1, k} \\
& =\sum_{k=1}^{j-1} \sum_{l=1}^{N} U_{i k}^{(l)}-\sum_{k=1}^{j} \sum_{l=1}^{N} U_{i+1, k}^{(l)} \\
& =\sum_{l=1}^{N} L_{i j}^{(l)} \geq 0 .
\end{aligned}
$$

Also, for $i \in I$,

$$
\begin{aligned}
\tilde{\mu}_{i}-\sum_{k=1}^{i-1} \tilde{U}_{k i} & =\sum_{l=1}^{N} \mu_{i}^{(l)}-\sum_{k=1}^{i-1} \sum_{l=1}^{N} U_{k i}^{(l)} \\
& =\sum_{l=1}^{N}\left(\mu_{i}^{(l)}-\sum_{k=1}^{i-1} U_{k i}^{(l)}\right) \geq 0 .
\end{aligned}
$$

By the choice of $H, \tilde{\lambda}=\lambda$. Then $\tilde{H} \in \mathbb{H}(\lambda)$.
We may assume $\Psi(\tilde{H})=\tilde{H}_{1} \otimes \cdots \otimes \tilde{H}_{N}$, where $\tilde{H}_{k}=\left(\Lambda_{l_{k}}, \tilde{\mu}^{(k)}, 0,\left(\tilde{U}_{i j}^{(k)}\right)_{i<j}\right)$ for $k=1,2, \ldots, N$. We show $\tilde{H}_{k}=H_{k}$ for $k=1, \ldots, N$ by induction on k. Set $\tilde{H}^{(N)}=\tilde{H}$ and $\lambda^{(N)}=\lambda$. By Definition [区], we know $\Psi_{\lambda^{(k)}}\left(\tilde{H}^{(k)}\right)=\tilde{H}^{(k-1)} \otimes \tilde{H}_{k}$, where $\tilde{H}^{(k)}=\left(\lambda^{(k)}, \tilde{\mu}^{(k)}, 0,\left(V_{i j}^{(k)}\right)_{i<j}\right)$ for $k=$ $1,2, \ldots, N$. By Definition and $H \in \mathcal{F}$,

$$
\begin{aligned}
\tilde{U}_{i j}^{(N)} & = \begin{cases}1 & \text { if } j=\min \left\{j \in[n] \mid U_{i j}^{(1)}+\cdots+U_{i j}^{(N)}>0\right\}, \\
0 & \text { otherwise },\end{cases} \\
& = \begin{cases}1 & \text { if } j=j_{i, N}, \\
0 & \text { otherwise },\end{cases} \\
& =U_{i j}^{(N)} .
\end{aligned}
$$

By Definition ID, $\tilde{\mu}^{(N)}=\mu^{(N)}$, namely $\tilde{H}_{N}=H_{N}$ holds. Assume that $\tilde{H}_{s}=H_{s}$ for $s=k+1, k+$ $2, \ldots, N$. By Definition $\mathbb{\| 8}, H \in \mathcal{F}$, and the induction hypothesis,

$$
\begin{aligned}
\tilde{U}_{i j}^{(k)} & = \begin{cases}1 & \text { if } j=\min \left\{j \in[n] \mid U_{i j}^{(1)}+\cdots+U_{i j}^{(k)}>0\right\}, \\
0 & \text { otherwise, },\end{cases} \\
& = \begin{cases}1 & \text { if } j=j_{i, k}, \\
0 & \text { otherwise },\end{cases} \\
& =U_{i j}^{(k)} .
\end{aligned}
$$

By Definition [8, $\tilde{\mu}^{(k)}=\mu^{(k)}$, namely $\tilde{H}_{k}=H_{k}$ holds. Thus, $H \in \Psi(\mathbb{H}(\lambda))$.

Lemma 26

Let $H=\left(\Lambda_{v}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{\nu}\right)$. Suppose that there exists $i_{0}, j_{0}, i_{1}, j_{1} \in[n]$ such that $U_{i_{0}, j_{0}}, U_{i_{1}, j_{1}}>0$. Then $i_{1}>i_{0}$ if and only if $j_{1}>j_{0}$.
Proof Let $H=\left(\Lambda_{\nu}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{\nu}\right)$. Suppose that there exists $i_{0}, j_{0}, i_{1}, j_{1} \in[n]$ such that $U_{i_{0}, j_{0}}, U_{i_{1}, j_{1}}>0$.

Assume $i_{1}>i_{0}$ and $i_{1}=i_{0}+l$ for some $l \in \mathbb{Z}$. By Lemma $\mathbb{4}$ and $H \in \mathbb{H}\left(\Lambda_{v}\right)$,

$$
\begin{aligned}
\sum_{k=0}^{l-1} L_{i_{0}+k, j_{0}+k} & =\sum_{k=1}^{j_{0}-1} U_{i_{0}, k}-\sum_{k=1}^{j_{0}+l-1} U_{i_{0}+l, k} \\
& =-\sum_{k=1}^{j_{0}+l-1} U_{i_{0}+l, k} \geq 0 .
\end{aligned}
$$

Then, we have $U_{i_{1} k}=0$ for $k=1,2, \ldots, j_{0}+l-1$, especially $U_{i_{1} k}=0$ if $k \leq j_{0}$. Thus, $j_{1}>j_{0}$ holds.

Assume $j_{1}>j_{0}$. Suppose that $i_{0} \geq i_{1}$ and $i_{0}=i_{1}+l$ for some $l \in \mathbb{Z}$. By Lemma $\mathbb{4}$ and $H \in \mathbb{H}\left(\Lambda_{v}\right)$,

$$
\begin{aligned}
\sum_{k=0}^{l-1} L_{i_{1}+k, j_{1}+k} & =\sum_{k=1}^{j_{1}-1} U_{i_{1} k}-\sum_{k=1}^{j_{1}+l-1} U_{i_{1}+l, k} \\
& =-\sum_{k=1}^{j_{1}+l-1} U_{i_{1}+l, k} \geq 0
\end{aligned}
$$

Then, we have $U_{i_{0} k}=0$ for $k=1,2, \ldots, j_{1}+l-1$, especially $U_{i_{0} k}=0$ if $k<j_{1}$, however, this is a contradiction for $j_{1}>j_{0}$. Thus, $i_{1}>i_{0}$ holds.

Remark 27

For $H \in \mathbb{H}(\lambda)\left(\lambda \in P^{+}\right)$, let $\Psi(H)=H_{1} \otimes \cdots \otimes H_{N}$, where $H_{k}=\left(\Lambda_{l_{k}}, \mu^{(k)}, 0,\left(U_{i j}^{(k)}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{k}\right)$ for $k=1,2, \ldots, N$. For $i \in[n]$ and $k \in\{1,2, \ldots, N\}$, let $j_{i, k}$ be as in Lemma [23]. Then, for each $k=1,2, \ldots, N$, we have

$$
\begin{equation*}
j_{1, k}<j_{2, k}<\cdots<j_{l_{k}, k} \tag{4}
\end{equation*}
$$

from Lemma 26.

Proposition 28

Let $\lambda \in P . \Psi(\mathbb{H}(\lambda)) \cup\{0\}$ is stable under the action of e_{i} and f_{i} for $i \in I$.
Proof We show that $f_{i}(\Psi(\mathbb{H}(\lambda)) \cup\{0\}) \subset \Psi(\mathbb{H}(\lambda)) \cup\{0\}$. Let $H=H_{1} \otimes \cdots \otimes H_{N} \in \Psi(\mathbb{H}(\lambda))$, where $H_{k}=\left(\Lambda_{l_{k}}, \mu^{(k)}, 0,\left(U_{i j}^{(k)}\right)_{i<j}\right)$. Assume $f_{i} H=H_{1} \otimes \cdots \otimes f_{i} H_{k_{0}} \otimes \cdots \otimes H_{N}$. If $f_{i} H=0$, the statement is obvious.

Suppose $f_{i} H \neq 0$. Let $f_{i} H_{k_{0}}=\left(\Lambda_{l_{k_{0}}}, \tilde{\mu}^{\left(k_{0}\right)}, 0,\left(\tilde{U}_{i j}^{\left(k_{0}\right)}\right)_{i<j}\right)$. For $i \in I$, if there exists $j \in[n]$ such that $\tilde{U}_{i j}^{\left(k_{0}\right)}>0$, then set $\tilde{j}_{i, k_{0}}$ to its j, otherwise set $\tilde{j}_{i, k_{0}}$ to 0 . For $H_{k_{0}}$ and i, let k_{0} in Definition $\mathbb{I 5}$ (5) be written as $k_{f_{i} H}$. Then we know $j_{k_{f_{i} H}, k_{0}}=i$. By Definition [15, we have $\tilde{j}_{k_{f_{i} H}, k_{0}}=i+1$ and $\tilde{j}_{k, k_{0}}=j_{k, k_{0}}$ if $k \neq k_{f_{i} H}$. By Proposition [25, to show that $f_{i} H \in \Psi(H)$, it suffices to check that $j_{k_{f_{i} H}, k_{0}-1} \geq \tilde{j}_{k_{f_{i} H}, k_{0}}=i+1$. Note that we have $j_{k_{f_{i} H}, k_{0}-1} \geq j_{k_{f_{i} H}, k_{0}}=i$ since $H \in \Psi(\mathbb{H}(\lambda))$. It also follows that $\varphi_{i}\left(H_{k_{0}-1}\right)=0$ since $\varphi_{i}\left(H_{k_{0}-1}\right)-\varepsilon_{i}\left(H_{k_{0}}\right) \leq 0$ holds from Proposition ${ }^{7}$.

Suppose $j_{k_{f_{i}}, k_{0}-1}=i$. Then, $\mu_{i}^{\left(k_{0}-1\right)}=\mu_{i+1}^{\left(k_{0}-1\right)}=1$ follows from Remark 16 and $\varphi_{i}\left(H_{k_{0}-1}\right)=0$. By Lemma 26, $j_{k_{f i H}+1, k_{0}-1}=i+1$ and $j_{k_{f_{i}}+1, k_{0}}>i$ holds. Since $f_{i} H^{\left(k_{0}\right)} \neq 0$, we know $\mu_{i+1}^{\left(k_{0}\right)}=0$ by Remark[6. Then, we have $j_{k_{f_{i}}+1, k_{0}}>i+1$ from (邓). Now, we have $j_{k_{f_{i}}+1, k_{0}-1}=i+1<j_{k_{f_{i}}+1, k_{0}}$, however this is a contradiction for $H \in \Psi(\mathbb{H}(\lambda))$. Thus, $j_{k_{f_{i}}, k_{0}-1} \geq i+1$ holds.

Similarly, $e_{i}(\Psi(\mathbb{H}(\lambda)) \cup\{0\}) \subset \Psi(\mathbb{H}(\lambda)) \cup\{0\}$ is can be shown.
Now, we define the crystal structure on $\mathbb{H}(\lambda)\left(\lambda \in P^{+}\right)$using an injection Ψ.

Definition 29 ([14])

Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i} \in P^{+}$. The crystal structure on $\mathbb{H}(\lambda)$ is defined so that Ψ is a morphism of crystals.

The crystal structure on $\mathbb{H}(\lambda)$ is isomorphic to the crystal basis of an irreducible highest weight module of type A_{n-1} as follows.

Definition 30 ([14])
Let $\lambda \in P^{+}$. Then define $H_{\lambda} \in \mathbb{H}(\lambda)$ by $H_{\lambda}=\left(\lambda, \lambda, 0,(0)_{i<j}\right)$.

Remark 31 ([14])

Let $\lambda \in P^{+}$. Let $H_{\lambda}=\left(\lambda, \lambda, 0,(0)_{i<j}\right) \in \mathbb{H}(\lambda)$. For $i=1,2, \ldots, \ell(\lambda)$, we have

$$
U_{i i}=\lambda_{i}-\sum_{k=1}^{i-1} U_{k i}=\lambda_{i}>0
$$

Lemma 32 ([14])
Let $\lambda \in P^{+}$. Then H_{λ} is the highest weight element of weight λ in $\mathbb{H}(\lambda)$.

Lemma 33 ([14])
Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i} \in P^{+}$. Then we have

$$
\mathbb{H}(\lambda)=\left\{f_{i_{1}} \ldots f_{i_{k}} H_{\lambda} \mid k \geq 0, i_{1}, \ldots, i_{k} \in I\right\} .
$$

Therefore $\mathbb{H}(\lambda)$ is connected.
For $\lambda \in P^{+}$, let $B(\lambda)$ be the crystal basis of $V(\lambda)$ with the highest weight vector b_{λ}. For an arbitrary $\lambda \in P^{+}$, to show that $\mathbb{H}(\lambda)$ is isomorphic to $B(\lambda)$, we first show that $\mathbb{H}\left(\Lambda_{v}\right)$ is isomorphic to $B\left(\Lambda_{v}\right)$ for $v \in I$.

Proposition 34

Let $H, H^{\prime} \in \mathbb{H}\left(\Lambda_{\nu}\right)$. If $\mathrm{wt}(H)=\mathrm{wt}\left(H^{\prime}\right)$, then $H=H^{\prime}$ holds.
Proof Let $H=\left(\Lambda_{v}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{v}\right)$. Set $\lambda=\Lambda_{v}$. For $s=1,2, \ldots, v$, there exists a unique $j_{s} \in[n]$ such that $U_{s j_{s}}=1$ by Lemma [4]. By Lemma [4] and (2), $\mu_{k}=1$ if $k=j_{s}$ for some $s=1,2, \ldots, v$, otherwise $\mu_{k}=0$. By Lemma [26, we have $j_{1}<j_{2}<\cdots<j_{v}$. Thus, (s, j_{s}) is uniquely determined by λ and μ. Therefore, if $\mathrm{wt}(H)=\operatorname{wt}\left(H^{\prime}\right)$, then $H=H^{\prime}$ holds for $H, H^{\prime} \in \mathbb{H}\left(\Lambda_{\nu}\right)$.

By the proof of Proposition [34, we have the following.

Corollary 35

Let $H=\left(\Lambda_{v}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{v}\right)$. For $s=1,2, \ldots, v$, let $j_{s} \in[n]$ such that $\mu_{j_{s}}=1$. Assume $j_{1}<j_{2}<\cdots<j_{v}$. Then,

$$
U_{i j}= \begin{cases}1 & \text { if }(i, j)=\left(s, j_{s}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 36

For $H=\left(\Lambda_{v}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{v}\right)$, set $\Omega(H)=\left(\Lambda_{v}, \xi, 0,\left(V_{i j}\right)_{i<j}\right)$, where $\xi_{i}=\mu_{n+1-i}(i \in[n])$ and $V_{i j}=U_{v+1-i, n+1-j}(1 \leq i<j \leq n)$. Then, $\Omega(H) \in \mathbb{H}\left(\Lambda_{v}\right)$.

Proof Set $\lambda=\Lambda_{v}$. For $s=1,2, \ldots, v$, we can take $j_{s} \in[n]$ such that $\mu_{j_{s}}=1$ since $H \in \mathbb{H}\left(\Lambda_{v}\right)$. We may assume $j_{1}<j_{2}<\cdots<j_{v}$ by retaking j_{s} if necessary. By Corollary [35,

$$
U_{i j}= \begin{cases}1 & \text { if }(i, j)=\left(s, j_{s}\right) \text { for some } s \in\{1,2, \ldots, v\}, \\ 0 & \text { otherwise }\end{cases}
$$

By the definition of $\Omega, \xi_{k}=1$ if $k=n+1-j_{s}$, otherwise $\xi_{k}=0$. Also, we have

$$
\begin{aligned}
V_{i j} & =U_{v+1-i, n+1-j} \\
& = \begin{cases}1 & \text { if }(i, j)=\left(v+1-s, n+1-j_{s}\right), \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Since $\xi \in P$ and $\sum_{i=1}^{n} \xi_{i}=v$, we can take $H^{\prime} \in \mathbb{H}\left(\Lambda_{v}\right)$ such that $w t\left(H^{\prime}\right)=\xi$. By Corollary [35, $\Omega(H)=H^{\prime}$ holds, and hence $\Omega(H) \in \mathbb{H}\left(\Lambda_{v}\right)$ holds.

Definition 37

The map $\Omega: \mathbb{H}\left(\Lambda_{v}\right) \cup\{0\} \rightarrow \mathbb{H}\left(\Lambda_{v}\right) \cup\{0\}$ is defined by H maps to $\Omega(H)$ for $H \in \mathbb{H}\left(\Lambda_{v}\right)$ and $\Omega(0)=0$.

Proposition 38

The map $\Omega: \mathbb{H}\left(\Lambda_{\nu}\right) \cup\{0\} \rightarrow \mathbb{H}\left(\Lambda_{v}\right) \cup\{0\}$ is an involution.
Proof Let $H \in \mathbb{H}\left(\Lambda_{v}\right)$. By Definition B7, we have $\Omega(\Omega(H))=H$. Also, we have $\Omega(0)=0$. Then, Ω is a surjection. Let $H, K \in \mathbb{H}\left(\Lambda_{v}\right) \cup\{0\}$. Assume $\Omega(H)=\Omega(K)$. By Definition B7, we have $H=\Omega(\Omega(H))=\Omega(\Omega(K))=K$. Then Ω is an injection. Thus, Ω is a bijection, especially Ω is an involution.

Proposition 39

$\Omega: \mathbb{H}\left(\Lambda_{\nu}\right) \rightarrow \mathbb{H}\left(\Lambda_{\nu}\right)$ has the following properties. For $H \in \mathbb{H}\left(\Lambda_{\nu}\right)$ and $i \in I$,

1. $\operatorname{wt}(\Omega(H))=w_{0} \mathrm{wt}(H)$,
2. $\varphi_{i}(\Omega(H))=\varepsilon_{n-i}(H)$,
3. $\varepsilon_{i}(\Omega(H))=\varphi_{n-i}(H)$,
4. $f_{i}(\Omega(H))=\Omega\left(e_{n-i}(H)\right)$,
5. $e_{i}(\Omega(H))=\Omega\left(f_{n-i}(H)\right)$,
where w_{0} denotes the longest element in the Weyl group of type A_{n-1}.
Proof Let $H=\left(\Lambda_{v}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{v}\right)$. Let w_{0} be the longest element in the Weyl group of type A_{n-1}. By Definition [37, we have

$$
\begin{aligned}
\mathrm{wt}(\Omega(H)) & =\sum_{k=1}^{n} \mu_{n+1-k} \epsilon_{k}=\sum_{k=1}^{n} \mu_{k} \epsilon_{n+1-k} \\
& =\sum_{k=1}^{n} \mu_{k} w_{0}\left(\epsilon_{k}\right)=w_{0} \mathrm{wt}(H),
\end{aligned}
$$

hence (II) holds.
By Definition [37, we have

$$
\begin{aligned}
\varphi_{i}(\Omega(H)) & =\max \left\{\mu_{n+1-i}-\mu_{n-i}, 0\right\} \\
& =\varepsilon_{n-1}(H) .
\end{aligned}
$$

Then (¹) holds. Also, we have

$$
\begin{aligned}
\varepsilon_{i}(\Omega(H)) & =\max \left\{\mu_{n-i}-\mu_{n+1-i}, 0\right\} \\
& =\varphi_{n-1}(H) .
\end{aligned}
$$

Then (${ }^{(1)}$) holds.
From (Z]), (4) is obvious if $f_{i} \Omega(H)=0$. Suppose $f_{i} \Omega(H) \neq 0$. Set $\xi=\operatorname{wt}\left(f_{i} \Omega(H)\right)$ and $o=\mathrm{wt}\left(\Omega\left(e_{n-i}(H)\right)\right.$. By Definitions [15 and B7, for $k=1,2, \ldots, n$,

$$
\begin{aligned}
\xi_{k} & = \begin{cases}\mu_{n+1-k}-1 & \text { if } k=i, \\
\mu_{n+1-k}+1 & \text { if } k=i+1, \\
\mu_{n+1-k} & \text { otherwise }\end{cases} \\
& =o_{k} .
\end{aligned}
$$

By Proposition (34, (4) holds.

From (지), (I) is obvious if $e_{i} \Omega(H)=0$. Suppose $e_{i} \Omega(H) \neq 0$. Set $\xi=\operatorname{wt}\left(e_{i} \Omega(H)\right)$ and $o=\mathrm{wt}\left(\Omega\left(f_{n-i}(H)\right)\right)$. By Definitions [15 and B7, for $k=1,2, \ldots, n$,

$$
\begin{aligned}
\xi_{k} & = \begin{cases}\mu_{n+1-k}+1 & \text { if } k=i \\
\mu_{n+1-k}-1 & \text { if } k=i+1 \\
\mu_{n+1-k} & \text { otherwise }\end{cases} \\
& =o_{k}
\end{aligned}
$$

By Proposition [34, (15) holds.

Proposition 40

Let $k \in I$. There is an isomorphism from $\mathbb{H}\left(\Lambda_{k}\right)$ to $B\left(\Lambda_{k}\right)$.
Proof Let $k \in I$. From [15] [II, Theorem 4.13], it suffices to show that

1. If $e_{i}(H)=0$, then $\varepsilon_{i}(H)=0$ for $H \in \mathbb{H}\left(\Lambda_{k}\right), i \in I$,
2. If $f_{i}(H)=0$, then $\varphi_{i}(H)=0$ for $H \in \mathbb{H}\left(\Lambda_{k}\right), i \in I$,
3. When $i, j \in I$ and $i \neq j$, if $H, K \in \mathbb{H}\left(\Lambda_{k}\right)$ and $K=e_{i} H$, then $\varepsilon_{j}(K)$ equals $\varepsilon_{j}(H)$ or $\varepsilon_{j}(H)+1$. The second case where $\varepsilon_{j}(K)=\varepsilon_{j}(H)+1$ is possible only if α_{i} and α_{j} are not orthogonal roots,
4. When $i, j \in I$ and $i \neq j$, if $H, K \in \mathbb{H}\left(\Lambda_{k}\right)$ and $K=f_{i} H$, then $\varphi_{j}(K)$ equals $\varphi_{j}(H)$ or $\varphi_{j}(H)+1$. The second case where $\varphi_{j}(K)=\varphi_{j}(H)+1$ is possible only if α_{i} and α_{j} are not orthogonal roots,
5. Assume that $i, j \in I$ and $i \neq j$. If $H \in \mathbb{H}\left(\Lambda_{k}\right)$ with $\varepsilon_{i}(H)>0$ and $\varepsilon_{j}\left(e_{i} H\right)=\varepsilon_{j}(H)>0$, then $e_{i} e_{j} H=e_{j} e_{i} H$ and $\varphi_{i}\left(e_{j} H\right)=\varphi_{i}(H)$,
6. Assume that $i, j \in I$ and $i \neq j$. If $H \in \mathbb{H}\left(\Lambda_{k}\right)$ with $\varphi_{i}(H)>0$ and $\varphi_{j}\left(f_{i} H\right)=\varphi_{j}(H)>0$, then $f_{i} f_{j} H=f_{j} f_{i} H$ and $\varepsilon_{i}\left(f_{j} H\right)=\varepsilon_{i}(H)$,
7. Assume that $i, j \in I$ and $i \neq j$. If $H \in \mathbb{H}\left(\Lambda_{k}\right)$ with $\varepsilon_{j}\left(e_{i} H\right)=\varepsilon_{j}(H)+1>1$ and $\varepsilon_{i}\left(e_{j} H\right)=$ $\varepsilon_{i}(H)+1>1$, then $e_{i} e_{j}^{2} e_{i} H=e_{j} e_{i}^{2} e_{j} H \neq 0, \varphi_{i}\left(e_{j} H\right)=\varphi_{i}\left(e_{j}^{2} e_{i} H\right)$ and $\varphi_{j}\left(e_{i} H\right)=\varphi_{j}\left(e_{i}^{2} e_{j} H\right)$,
8. Assume that $i, j \in I$ and $i \neq j$. If $H \in \mathbb{H}\left(\Lambda_{k}\right)$ with $\varphi_{j}\left(f_{i} H\right)=\varphi_{j}(H)+1>1$ and $\varphi_{i}\left(f_{j} H\right)=$ $\varphi_{i}(H)+1>1$, then $f_{i} f_{j}^{2} f_{i} H=f_{j} f_{i}^{2} f_{j} H \neq 0, \varepsilon_{i}\left(f_{j} H\right)=\varepsilon_{i}\left(f_{j}^{2} f_{i} H\right)$ and $\varepsilon_{j}\left(f_{i} H\right)=\varepsilon_{j}\left(f_{i}^{2} f_{j} H\right)$.
by Remark [16, Lemmas 33 and 32. By Remark [16, (II) and ([) hold. Also, again by Remark [16, we know that there is no $i \in I$ such that $\varepsilon_{i}(H)>1$ (resp. $\left.\varphi_{i}(H)>1\right)$, so ($\left.\mathbb{Z}\right)$ (resp. ($\left.\mathbb{(}\right)$) is true.

Let $i, j \in I$ with $i \neq j$. Let $H, K \in \mathbb{H}\left(\Lambda_{k}\right)$. Assume $K=e_{i} H$. By Definition $\mathbb{5}, \varepsilon_{j}(K)=\varepsilon_{j}(H)$ is obvious if $j \neq i-1, i+1$. Let $H=\left(\Lambda_{k}, \mu, 0,\left(U_{i j}\right)_{i<j}\right)$ and $K=\left(\Lambda_{k}, \xi, 0,\left(V_{i j}\right)_{i<j}\right)$. We know $\varepsilon_{i}(H)=1$ from $K \neq 0$ and Remark [6, especially $\mu_{i+1}=1$ and $\mu_{i}=0$. By Definition [15, if $\mu_{i-1}=0$, then $\varepsilon_{i-1}(K)=\varepsilon_{i-1}(H)+1$, otherwise $\varepsilon_{i-1}(K)=\varepsilon_{i-1}(H)$. Also, if $\mu_{i+2}=1$, then $\varepsilon_{i+1}(K)=\varepsilon_{i+1}(H)+1$, otherwise $\varepsilon_{i+1}(K)=\varepsilon_{i+1}(H)$. Then (3) holds.

Let $i, j \in I$ with $i \neq j$. Let $H \in \mathbb{H}\left(\Lambda_{k}\right)$. Assume that $\varepsilon_{i}(H)>0$ and $\varepsilon_{j}\left(e_{i} H\right)=\varepsilon_{j}(H)>0$. By Definition [5], $\mathrm{wt}\left(e_{i} e_{j} H\right)=\mathrm{wt}\left(e_{j} e_{i} H\right)$ holds. Then, $e_{i} e_{j} H=e_{j} e_{i} H$ holds by Proposition 34 . By assumption and (B), we can assume $j \neq i-1, i+1$. Then, we have $\varphi_{i}\left(e_{j} H\right)=\varphi_{i}(H)$ by Definition [55. Thus, ($\mathbf{W}^{(1)}$) is satisfied.

By Propositions [88, [39, and (5), (6) immediately holds.
Then we have the following from Definition 29 and Proposition 40.

Theorem 41 ([14])

Let $\lambda \in P^{+}$. Then, we have a crystal isomorphism $\Phi: \mathbb{H}(\lambda) \rightarrow B(\lambda)$ such that $\Phi\left(H_{\lambda}\right)=b_{\lambda}$.
The crystal structure on $\mathbb{H}(\lambda)$ can also be given by considering a combinatorial description.

Theorem 42 ([14])

Let $\lambda=\sum_{i \in I} m_{i} \Lambda_{i}$. For $H \in \mathbb{H}(\lambda)$, the maps wt, $f_{j}, e_{j}, \varphi_{j}, \varepsilon_{j}(j \in I)$ are computed as follows. Fix $j \in I$.

1. $\operatorname{wt}(H)=\sum_{i \in I}\left(\mu_{i}-\mu_{i+1}\right) \Lambda_{i}$.
2. For $k \in\{1,2, \ldots, j\}$, set $\varphi_{j}^{(k)}(H)=\max \left\{\varphi_{j}^{(k-1)}(H)+U_{k, j}-U_{k+1, j+1}, 0\right\}$. Note that we regard $\varphi_{j}^{(0)}$ as 0 . Then, we have $\varphi_{j}(H)=\varphi_{j}^{(j)}(H)$.
3. For $k \in\{1,2, \ldots, j+1\}$, set $\varepsilon_{j}^{(k)}(H)=\max \left\{\varepsilon_{j}^{(k-1)}(H)+U_{j+2-k, j+1}-U_{j+1-k, j}, 0\right\}$. Note that we regard $\varepsilon_{j}^{(0)}$ as 0 . Then, we have $\varepsilon_{j}(H)=\varepsilon_{j}^{(j+1)}(H)$.
4. If $\varphi_{j}(H)=0$ then $f_{j} H=0$. If $\varphi_{j}(H) \neq 0$, let

$$
k_{f_{j} H}=\min \left\{k \in[n] \mid \forall l \geq k, \varphi_{j}^{(l)}(H)>0\right\} .
$$

Then, we have $f_{j} H=\left(\lambda, \mu^{\prime}, 0,\left(U_{k l}^{\prime}\right)_{k<l}\right)$ where

$$
\begin{aligned}
& \mu^{\prime}=\sum_{k \neq j, j+1} \mu_{k} \epsilon_{k}+\left(\mu_{j}-1\right) \epsilon_{j}+\left(\mu_{j+1}+1\right) \epsilon_{j+1}, \\
& U_{k l}^{\prime}= \begin{cases}U_{k l}-1 & \text { if } k=k_{f_{j} H}, l=j, \\
U_{k l}+1 & \text { if } k=k_{f_{j} H}, l=j+1, \\
U_{k l} & \text { else. }\end{cases}
\end{aligned}
$$

5. If $\varepsilon_{j}(H)=0$ then $e_{j} H=0$. If $\varepsilon_{j}(H) \neq 0$, let

$$
k_{e_{j} H}=\min \left\{k \in[n] \mid \forall l \geq k, \varepsilon_{j}^{(l)}(H)>0\right\} .
$$

Then, we have $e_{j} H=\left(\lambda, \mu^{\prime}, 0,\left(U_{k l}^{\prime}\right)_{k<l}\right)$ where

$$
\begin{aligned}
& \mu^{\prime}=\sum_{k \neq j, j+1} \mu_{k} \epsilon_{k}+\left(\mu_{j}+1\right) \epsilon_{j}+\left(\mu_{j+1}-1\right) \epsilon_{j+1}, \\
& U_{k l}^{\prime}= \begin{cases}U_{k l}+1 & \text { if } k=j+2-k_{e_{j} H}, l=j, \\
U_{k l}-1 & \text { if } k=j+2-k_{e_{j} H}, l=j+1, \\
U_{k l} & \text { else. }\end{cases}
\end{aligned}
$$

3 Algorithms for the Crystal Structure on K-hives

In this section, we give a set of algorithms to compute the components of the crystal structure on $\mathbb{H}(\lambda)\left(\lambda \in P^{+}\right)$using two approaches. One approach is based on Definition [2I, which implies that the crystal structure on $\mathbb{H}(\lambda)$ is regarded as a subset of a tensor product of the form $\mathbb{H}\left(\Lambda_{k}\right)$ with $k \in I$. The other approach is based on Theorem 42, which is a more combinatorial description.

To consider algorithms, we regard $H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda)$ as a hash table with keys λ, μ, γ, and $\left(U_{i j}\right)_{i<j}$, where the value of λ is an array $\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right.$], the value of μ is an
array $\left[\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right]$, the value of γ is an array $[0,0, \ldots, 0]$, and the value of $\left(U_{i j}\right)_{i<j}$ is a twodimensional array $\left[\left[U_{12}, U_{13}, \ldots\right],\left[U_{23}, \ldots\right], \ldots,\left[U_{n-1, n}\right]\right]$.

To give algorithms for the crystal structure on $\mathbb{H}(\lambda)$ based on Definition 29, we first consider algorithms for the crystal structure on $\mathbb{H}\left(\Lambda_{k}\right)(k \in I)$. The maps f_{i} (resp. $\left.e_{i}\right)(I \in I)$ for $\mathbb{H}\left(\Lambda_{k}\right)(k \in$ $I)$ are computed by Algorithm \mathbb{D} (resp. Algorithm [】). Note that the maps wt, $\varphi_{i}, \varepsilon_{i}(i \in I)$ are simply computed by Definition $\mathbb{\boxed { 5 }}$ as $\sum_{k \in I}\left(\mu_{k}-\mu_{k+1}\right) \Lambda_{k}, \max \left(\mu_{i}-\mu_{i+1}, 0\right), \max \left(\mu_{i+1}-\mu_{i}, 0\right)$, respectively for $H=\left(\Lambda_{k}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{k}\right)$.

```
Algorithm 1 Algorithm for \(f_{i}\) on \(\mathbb{H}\left(\Lambda_{k}\right)\)
Input: \(H=\left(\Lambda_{k}, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{k}\right), i \in I\)
Output: \(f_{i} H\)
    if \(\max \left(\mu_{i}-\mu_{i+1}, 0\right)=0\) then
        return 0
    end if
    Take \(k_{0}\) from \(\left\{k \in[i] \mid U_{k, i}>0\right\}\)
    \(\mu_{i}:=\mu_{i}-1\)
    \(\mu_{i+1}:=\mu_{i+1}+1\)
    \(U_{k_{0}, i}:=U_{k_{0}, i}-1\)
    \(U_{k_{0}, i+1}:=U_{k_{0}, i+1}+1\)
    return \(\left(\Lambda_{k}, \mu, 0,\left(U_{i j}\right)_{i<j}\right)\)
```

```
Algorithm 2 Algorithm for \(e_{i}\) on \(\mathbb{H}\left(\Lambda_{k}\right)\)
Input: \(H=\left(\Lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}\left(\Lambda_{k}\right), i \in I\)
Output: \(e_{i} H\)
    if \(\max \left(\mu_{i+1}-\mu_{i}, 0\right)=0\) then
        return 0
    end if
    Take \(k_{0}\) from \(\left\{k \in[i+1] \mid U_{k, i+1}>0\right\}\)
    \(\mu_{i}:=\mu_{i}+1\)
    \(\mu_{i+1}:=\mu_{i+1}-1\)
    \(U_{k_{0}, i}:=U_{k_{0}, i}+1\)
    \(U_{k_{0}, i+1}:=U_{k_{0}, i+1}-1\)
    return \(\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right)\)
```

Let us give an example of executing Algorithmm.

Example 43

The action of f_{i} on the $U_{q}\left(\mathfrak{s l}_{4}\right)$-crystal $\mathbb{H}\left(\Lambda_{3}\right)$ is computed as follows by Algorithm [ा. Let $H=\left(\Lambda_{3}, \Lambda_{3}, 0,(0)_{k<l}\right) \in \mathbb{H}\left(\Lambda_{3}\right)$. Set $\mu=\Lambda_{3}$. Note that Λ_{3} is represented by the partition $(1,1,1,0)$. For $i=1$, we have $f_{1} H=0$ since $\max \left(\mu_{1}-\mu_{2}, 0\right)=0$. Also, for $i=2$, we have $f_{2} H=0$ since $\max \left(\mu_{2}-\mu_{3}, 0\right)=0$. Let $i=3$. In this case, $\max \left(\mu_{3}-\mu_{4}, 0\right)=1$. Then we can proceed to the next step. Since $\left\{k \in[3] \mid U_{k, 3}>0\right\}=\{3\}, k_{0}$ is uniquely determined to 3 . Then set $\xi=\mu$, then set $\xi_{3}=\mu_{3}-1=0$ and $\xi_{4}=\mu_{4}+1=1$. Also, set $V_{i j}=U_{i j}$, and set $V_{3,3}=U_{3,3}-1=0$ and $V_{3,4}=U_{3,4}+1=1$. Then we have $f_{i} H=\left(\Lambda_{3}, \xi, 0,\left(V_{i j}\right)_{i<j}\right)$. See Fig. [].

Algorithms $\mathbb{\square}$ and \rrbracket generate results that correspond to Definition $\mathbb{\square} \sqrt{ }$ as follows.

Proposition 44

For $k \in I$, let $H \in \mathbb{H}\left(\Lambda_{k}\right)$. Let $i \in I$.

Fig. 3: Action of f_{3} on the $U_{q}\left(\mathfrak{s I}_{4}\right)$-crystal $\mathbb{H}\left(\Lambda_{3}\right)$

1. Let K be the result of Algorithm■ with inputs H and i. Then, $K=f_{i} H$,
2. Let K be the result of Algorithm【 with inputs H and i. Then, $K=e_{i} H$.

Proof For $k \in I$, let $H \in \mathbb{H}\left(\Lambda_{k}\right)$. Let $i \in I$. (II) Let K be the result of Algorithm \mathbb{D} with inputs H and i. By Lemma \mathbb{L}, k_{0} in Algorithm \mathbb{D} is uniquely determined. Then we have $K=f_{i} H$ from Definition [I5. Similarly, (ZI) can be shown.

For $\lambda \in P^{+}$, the map Ψ_{λ} is computed by Algorithm [].
The following is an example of executing Algorithm [3].

Example 45

Let $n=4, \lambda=(3,2,1,0)$, and $\mu=(2,3,1,0)$. Let $H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda)$, where $U_{12}=1$ and $U_{i j}=0$ if $(i, j) \neq(1,2)$ and $i<j$. Then $\Psi_{\lambda}(H)$ is computed by Algorithm $[3$ as follows. Set $v=\ell(\lambda)=3$. Let $\lambda^{(2)}=\left(\lambda_{1}^{(2)}, \lambda_{2}^{(2)}, \ldots, \lambda_{n}^{(2)}\right)$, where $\lambda_{k}^{(2)}=1$ if $k \in[v]$ else $\lambda_{k}^{(2)}=0$. Set $U_{i j}^{(2)}=U_{i j}$ for $1 \leq i<j \leq 4$. Since $\min \left\{l \in[4] \mid U_{1 l}>0\right\}=1$, set $U_{11}^{(2)}=1$ and $U_{12}^{(2)}=U_{13}^{(2)}=U_{14}^{(2)}=0$. Since $\min \left\{l \in[4] \mid U_{2 l}>0\right\}=2$, set $U_{22}^{(2)}=1$ and $U_{23}^{(2)}=U_{24}^{(2)}=0$. Since $\min \left\{l \in[4] \mid U_{3 l}>0\right\}=3$, set $U_{33}^{(2)}=1$ and $U_{34}^{(2)}=0$. Set

$$
\begin{aligned}
\mu_{1}^{(2)}=U_{11}^{(2)}=1, & \mu_{2}^{(2)}=U_{12}^{(2)}+U_{22}^{(2)}=1, \\
\mu_{2}^{(2)}=U_{13}^{(2)}+U_{23}^{(2)}+U_{33}^{(2)}=1, & \mu_{4}^{(2)}=U_{14}^{(2)}+U_{24}^{(2)}+U_{34}^{(2)}+U_{44}^{(2)}=0 .
\end{aligned}
$$

Set

$$
\begin{array}{ll}
\lambda_{1}^{(1)}=\lambda_{1}-\lambda_{1}^{(2)}=2, & \lambda_{2}^{(1)}=\lambda_{2}-\lambda_{2}^{(2)}=1, \\
\lambda_{3}^{(1)}=\lambda_{3}-\lambda_{3}^{(2)}=0, & \lambda_{4}^{(1)}=\lambda_{4}-\lambda_{4}^{(2)}=0 .
\end{array}
$$

Set $U_{i j}^{(1)}=U_{i j}-U_{i j}^{(2)}$ for $1 \leq i \leq j \leq 4$. Set

$$
\begin{array}{cl}
\mu_{1}^{(1)}=U_{11}^{(1)}=1, & \mu_{2}^{(1)}=U_{12}^{(1)}+U_{22}^{(1)}=2, \\
\mu_{2}^{(1)}=U_{13}^{(1)}+U_{23}^{(1)}+U_{33}^{(1)}=0, & \mu_{4}^{(1)}=U_{14}^{(1)}+U_{24}^{(1)}+U_{34}^{(1)}+U_{44}^{(1)}=0 .
\end{array}
$$

Then $\Psi_{\lambda}=\left(\lambda^{(1)}, \mu^{(1)}, 0,\left(U_{i j}^{(1)}\right)\right) \otimes\left(\lambda^{(2)}, \mu^{(2)}, 0,\left(U_{i j}^{(2)}\right)\right)$. See Fig. \mathbb{Z}
Algorithm [] generates a result corresponding to an image of Ψ_{λ}.

```
Algorithm 3 Algorithm for \(\Psi_{\lambda}\)
Input: \(H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda)\)
Output: \(\Psi_{\lambda}(H)\)
    for \(k=1,2, \ldots, n\) do \(\quad \triangleright\) Compute \(\lambda^{(2)}\)
        if \(k \in[1, \ell(\lambda)]_{\mathbb{Z}}\) then
        \(\lambda_{k}^{(2)}=1\)
        else
            \(\lambda_{k}^{(2)}=0\)
        end if
    end for
    \(\lambda^{(2)}:=\left(\lambda_{1}^{(2)}, \lambda_{2}^{(2)}, \ldots, \lambda_{n}^{(2)}\right)\)
    \(\left(U_{i j}^{(2)}\right)_{i<j}:=\left(U_{i j}\right)_{i<j} \quad \triangleright \operatorname{Compute}\left(U_{i j}^{(2)}\right)_{i<j}\)
    for \(i=1,2, \ldots, n-1\) do
        for \(j=i+1, i+2, \ldots, n\) do
            if \(j=\min \left\{l \in[n] \mid U_{i l}>0\right\}\) then
                \(U_{i j}^{(2)}:=1\)
            else
                \(U_{i j}^{(2)}:=0\)
            end if
        end for
    end for
    for \(k=1,2, \ldots, n\) do \(\quad \triangleright\) Compute \(\mu^{(2)}\)
        \(\mu_{k}^{(2)}:=\sum_{l=1}^{i} U_{l i}^{(2)}\)
    end for
    \(\mu^{(2)}:=\left(\mu_{1}^{(2)}, \mu_{2}^{(2)}, \ldots, \mu_{n}^{(2)}\right)\)
    for \(k=1,2, \ldots, n\) do \(\quad \triangleright\) Compute \(\lambda^{(1)}\)
        \(\lambda_{k}^{(1)}:=\lambda_{k}-\lambda_{k}^{(2)}\)
    end for
    \(\lambda^{(1)}:=\left(\lambda_{1}^{(1)}, \lambda_{2}^{(1)}, \ldots, \lambda_{n}^{(1)}\right)\)
    \(\left(U_{i j}^{(1)}\right)_{i<j}:=\left(U_{i j}\right)_{i<j} \quad \triangleright \operatorname{Compute}\left(U_{i j}^{(1)}\right)_{i<j}\)
    for \(i=1,2, \ldots, n-1\) do
        for \(j=i+1, i+2, \ldots, n\) do
            \(U_{i j}^{(1)}:=U_{i j}-U_{i j}^{(2)}\)
        end for
    end for
    for \(i=1,2, \ldots, n\) do \(\quad \triangleright\) Compute \(\mu^{(1)}\)
        \(\mu_{i}^{(1)}=\sum_{l=1}^{i} U_{l i}^{(1)}\)
    end for
    return \(\left(\lambda^{(1)}, \mu^{(1)}, 0,\left(U_{i j}^{(1)}\right)_{i<j}\right) \otimes\left(\lambda^{(2)}, \mu^{(2)}, 0,\left(U_{i j}^{(2}\right)_{i<j}\right)\)
```


Proposition 46

For $\lambda \in P^{+}$, let $H \in \mathbb{H}(\lambda)$. Let K be the result of Algorithm ३ with input H. Then, $K=\Psi_{\lambda}(H)$.
Proof The statement immediately follows from Definition [8].
The map Ψ is defined to apply $\Psi_{\lambda}\left(\lambda \in P^{+}\right)$repeatedly, and note that the algorithm for Ψ_{λ} is given by Algorithm [3]. Then, the map Ψ is computed using Algorithm $\#$.

The following is an example of executing Algorithm \mathbb{G}.

Fig. 4: Action of Ψ_{λ} on $\mathbb{H}(\lambda)$

```
Algorithm 4 Algorithm for \(\Psi\)
Input: \(H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda)\)
Output: \(\Psi(H)\)
    \(H_{1} \otimes H_{2}:=\Psi_{\lambda}(H)\)
    \(N=2\)
    while \(H_{1} \notin \mathbb{H}\left(\Lambda_{k}\right)\) for any \(k \in I\) do
        \(K_{1} \otimes K_{2}:=\Psi\left(H_{1}\right)\)
        \(H:=K_{1} \otimes K_{2} \otimes H_{2} \otimes \cdots \otimes H_{N}\)
        \(N=N+1\)
        Rename \(H\) as \(H=H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}\)
    end while
    return \(\bigotimes_{k \in N} H_{k}\)
```


Example 47

Let $n=4, \lambda=(3,2,1,0)$ and $\mu=(2,3,1,0)$. Let $H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda)$, where $U_{12}=0$ and $U_{i j}=0$ if $(i, j) \neq(1,2)$ and $i<j$. By Algorithm [3,

$$
\begin{aligned}
\Psi_{\lambda}(H) & =\left((2,1,0,0),(1,2,0,0),\left(0^{4}\right),\left(U_{i j}^{(1)}\right)\right) \otimes\left((1,1,1,0),(1,1,1,0),\left(0^{4}\right),\left(U_{i j}^{(2)}\right)\right) \\
& :=H_{1} \otimes H_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& U_{i j}^{(1)}= \begin{cases}1 & \text { if }(i, j)=(1,2), \\
0 & \text { otherwise },\end{cases} \\
& U_{i j}^{(2)}=0 \quad(1 \leq i<j \leq 4) .
\end{aligned}
$$

Since $H_{1} \in \mathbb{H}((2,1,0,0))$, we proceed with the algorithm.

$$
\begin{aligned}
\Psi_{\lambda}\left(H_{1}\right) & =\left((1,0,0,0),(0,1,0,0),\left(0^{4}\right),\left(V_{i j}^{1}\right)\right) \otimes\left((1,1,0,0),(1,1,0,0),\left(0^{4}\right),\left(V_{i j}^{1}\right)\right) \\
& :=K_{1} \otimes K_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& V_{i j}^{(1)}= \begin{cases}1 & \text { if }(i, j)=(1,2), \\
0 & \text { otherwise, }\end{cases} \\
& V_{i j}^{(2)}=0 \quad(1 \leq i<j \leq 4) .
\end{aligned}
$$

Then rename $K_{1} \otimes K_{2} \otimes H_{2}$ as $H_{1} \otimes H_{2} \otimes H_{3}$ ．Then，we have

$$
\Psi(H)=H_{1} \otimes H_{2} \otimes H_{3}
$$

See Fig．［1］．

Fig．5：Action of Ψ on $\mathbb{H}(\lambda)$

Proposition 48

For $\lambda \in P^{+}$，let $H \in \mathbb{H}(\lambda)$ ．Let K be the result of Algorithm \mathbb{Z} for input H ．Then，$K=\Psi(H)$ ．
Proof By Proposition［22，it is clear that Algorithm $⿴ 囗 十 ⺝$ yields the image of Ψ if the while state－ ment stops．For $\lambda \in P^{+}$，let $H \in \mathbb{H}(\lambda)$ ．Suppose $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{k+2}$ is obtained at the k－th step of the while statement in Algorithm \mathbb{H} ，and $H_{1} \notin \mathbb{H}\left(\Lambda_{i}\right)$ for all $i \in I$ ．Assume $H_{1} \in \mathbb{H}\left(\lambda^{(1)}\right)$ for $\lambda^{(1)} \in P^{+}$，where $\lambda^{(1)} \neq \Lambda_{i}$ for all $i \in I$ ．This means that there exists $m \in[n]$ such that $\lambda_{m}^{(1)}>1$ ， especially $\lambda_{1}^{(1)}>1$ ．Set $\lambda^{\prime}=\lambda^{(1)}$ and $m_{0}=\lambda_{1}^{(1)}$ ．Then at $k+m_{0}-1$ step in the while statement， we have

$$
H_{1} \otimes H_{2} \otimes \cdots \otimes H_{k+m_{0}+1}
$$

Assume $H_{1} \in \mathbb{H}\left(\lambda^{(1)}\right)$ ．Note that，since the indices are renamed，we retake H_{1} and $\lambda^{(1)}$ ．By Algorithm 四，we have $\lambda_{m}^{(1)}=\max \left(\lambda_{m}^{(k)}-\left(m_{0}-1\right), 0\right)$ for $m \in[n]$ ．Since $\lambda^{\prime} \in P^{+}$and $m_{0}=\lambda_{1}^{\prime}$ ， $\lambda_{m}^{(1)} \in\{0,1\}$ ．Hence $H_{1} \in \mathbb{H}\left(\Lambda_{v}\right)$ for $v \in I$ ．Thus，the while statement stops．

To compute $f_{i}, e_{i}(i \in I)$ on $\mathbb{H}(\lambda)$ ，we need the algorithm of Ψ^{-1} for the image of Ψ ．Algo－ rithm \square computes Ψ^{-1} for $H \in \Psi(\mathbb{H}(\lambda)$ ．

Proposition 49

For $\lambda \in P^{+}$，let $H \in \mathbb{H}(\lambda)$ ．Let $\Psi(H)=H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}$ ．Let K be the result of Algorithm \square with input $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}$ ．Then，$K=H$ ．

Proof For $\lambda \in P^{+}$，let $H \in \mathbb{H}(\lambda)$ ．Let $\Psi(H)=H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}$ ．Let K be the re－ sult of Algorithm \square with input $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}$ ．Assume that $H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right)$ and $H_{k}=\left(\lambda^{(k)}, \mu^{(k)}, 0,\left(U_{i j}^{(k)}\right)_{i<j}\right)$ for $k=1,2, \ldots, N$ ．Let $\Psi_{\lambda}(H)=K_{1} \otimes K_{2}$ ．Assume $K_{m}=$ $\left(v^{(m)}, \xi^{(m)}, 0,\left(V_{i j}^{(k)}\right)_{i<j}\right)$ ．By Definition［18，we have $\lambda_{k}=v_{k}^{(1)}+v_{k}^{(2)}, \mu_{k}=\xi_{k}^{(1)}+\xi_{k}^{(2)}$ for $k=$

```
Algorithm 5 Algorithm for \(\Psi^{-1}\)
Input: \(H=H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N} \in \bigotimes_{k} \mathbb{H}\left(\Lambda_{k}\right), H_{k}=\left(\lambda^{(k)}, \mu^{(k)}, 0,\left(U_{i j}^{(k)}\right)_{i<j}\right) \in \mathbb{H}\left(\lambda^{(k)}\right)\).
Output: \(\Psi^{-1}(H) \in \mathbb{H}(\lambda)\)
    for \(i=1,2, \ldots, n\) do
        \(\lambda_{i}:=\sum_{k=1}^{N} \lambda_{i}^{(k)}\)
    end for
    \(\lambda:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)\)
    for \(i=1,2, \ldots, n\) do
        \(\mu_{i}:=\sum_{k=1}^{N} \mu_{i}^{(k)}\)
    end for
    \(\mu:=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)\)
    for \(i=1,2, \ldots, n-1\) do
        for \(j=i+1, i+2, \ldots, n\) do
            \(U_{i j}:=\sum_{k=1}^{N} U_{i j}^{(k)}\)
        end for
    end for
    return \(\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right)\)
```

$1,2, \ldots, N$ and $U_{i j}=U_{i j}^{(1)}+U_{i j}^{(2)}$ for $1 \leq i<j \leq n$. Since the construction of Ψ, we obtain

$$
\begin{aligned}
& \lambda_{k}=\lambda_{k}^{(1)}+\cdots+\lambda_{k}^{(N)} \quad(k=1,2, \ldots, N), \\
& \mu_{k}=\mu_{k}^{(1)}+\cdots+\mu_{k}^{(N)} \quad(k=1,2, \ldots, N), \\
& U_{i j}=U_{i j}^{(1)}+\cdots+U_{i j}^{(N)} \quad(1 \leq i<j \leq n) .
\end{aligned}
$$

Thus, we have $K=H$.
By Definition [29, the crystal structure on $\mathbb{H}(\lambda)$ is defined by considering $\mathbb{H}(\lambda)$ as a subset of a tensor product of the form $\mathbb{H}\left(\Lambda_{k}\right)$ with $k \in I$. In detail, embedding $H \in \mathbb{H}(\lambda)$ into $\bigotimes_{k} \mathbb{H}\left(\Lambda_{k}\right)$ by Ψ, then compute the maps wt, $\varphi_{i}, \varepsilon_{i}, f_{i}, e_{i}(i \in I)$ by Definition B, then pulling it back into $\mathbb{H}(\lambda)$. Then, the maps wt, $\varphi_{i}, \varepsilon_{i}, f_{i}, e_{i}(i \in I)$ are computed by the following algorithms. For $\lambda \in P^{+}$, let $H \in \mathbb{H}(\lambda)$. Let $\Psi(H)=H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}$, which is computed by Algorithm ${ }^{\text {I }}$. Then $\mathrm{wt}(H)$ is computed by $\mathrm{wt}(H)=\sum_{k=1}^{N} \mathrm{wt}\left(H_{k}\right)$, where $\mathrm{wt}\left(H_{k}\right)$ is computed by algorithm of wt for $\mathbb{H}\left(\Lambda_{k^{\prime}}\right)$ for some $k^{\prime} \in I$. Then $\varphi_{i}(H)$ is computed by $\varphi_{i}(H)=\varphi_{i}\left(H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}\right)$, where $\varphi_{i}\left(H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}\right)$ is computed by Definition B and φ_{i} for $\mathbb{H}\left(\Lambda_{k}\right)(k \in I)$. Similarly, $\varepsilon_{i}(H)$ can be computed. Also, $f_{i}(H)$ is computed by $\Psi^{-1}\left(f_{i}\left(H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}\right)\right)$, where $\left.f_{i}\left(H_{1} \otimes H_{2} \otimes \cdots \otimes H_{N}\right)\right)$ is computed by Definition 3 and Algorithm [1. Similarly, $e_{i}(H)$ can be computed.

Proposition 50

Let $\lambda \in P^{+}$. Let wt, $\varphi_{i}, \varepsilon_{i}, f_{i}, e_{i}(i \in I)$ be computed using the above algorithms for $\mathbb{H}(\lambda)$. Then, the crystal structure on $\mathbb{H}(\lambda)$ determined by these maps corresponds to the crystal structure defined by Definition 29.

Proof By Definition 22, Proposition 48, and Proposition 44, the statement follows.
The crystal structure on $\mathbb{H}(\lambda)\left(\lambda \in P^{+}\right)$is also directly computed by Theorem 42 . The following algorithms compute the maps $\varphi_{i}, \varepsilon_{i}, f_{i}, e_{i}(i \in I)$ based on Theorem 42. Note that the map wt is simply computed by $\sum_{k \in I}\left(\mu_{k}-\mu_{k+1}\right) \Lambda_{k}$ for $H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right)$.

The following is an example of executing Algorithm 8 .

```
Algorithm 6 Algorithm for \(\varphi_{i}\) on \(\mathbb{H}(\lambda)\)
Input: \(H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda), i \in I\)
Output: \(\varphi_{i}(H)\)
    \(\varphi_{i}(H):=0\)
    for \(k=1,2, \ldots, i\) do
        \(\varphi_{i}(H):=\max \left(U_{k i}-U_{k+1, i+1}+\varphi_{i}(H), 0\right)\)
    end for
    return \(\varphi_{i}(H)\)
```

```
Algorithm 7 algorithm for \(\varepsilon_{i}\) on \(\mathbb{H}(\lambda)\)
Input: \(H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda), i \in I\)
Output: \(\varepsilon_{i}(H)\)
    \(\varepsilon_{i}(H):=0\)
    for \(k=1,2, \ldots, i\) do
        \(\varepsilon_{i}(H):=\max \left(U_{i+2-k, i+1}-U_{i+1-k, i}+\varepsilon_{i}(H), 0\right)\)
    end for
    \(\varepsilon_{i}(H)=\max \left(U_{1, i+1}+\varepsilon_{i}(H), 0\right) \quad \triangleright\) For \(k=i+1\)
    return \(\varepsilon_{i}(H)\)
```

```
Algorithm 8 Algorithm for \(f_{i}\) on \(\mathbb{H}(\lambda)\)
Input: \(H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda), i \in I\)
Output: \(f_{i} H\)
    if \(\varphi_{i}(H)=0\) then
        return 0
    end if
    \(F:=[0] \quad \triangleright\) Set an array
    for \(k=1,2, \ldots, i\) do
        \(F:=F \cdot \operatorname{append}\left(\max \left(U_{k i}-U_{k+1, i+1}+F[k-1], 0\right)\right)\)
    end for
    \(k_{f_{i} H}:=1\)
    for \(k=i, i-1, \ldots, 1\) do
        if \(F[k]<0\) then
            \(k_{f_{i} H}:=k-1\)
            break
        end if
    end for
    \(\mu_{i}:=\mu_{i}-1\)
    \(\mu_{i+1}:=\mu_{i+1}+1\)
    \(U_{k_{f, i}}:=U_{k_{f i}, i}-1\)
    \(U_{k_{f_{i}}, i+1}:=U_{k_{f_{i}},+1}+1\)
    return \(\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right)\)
```


Example 51

Let $n=4, \lambda=\mu=\Lambda_{1}+\Lambda_{3}$. Note that $\Lambda_{1}+\Lambda_{3}$ is represented by the partition ($2,1,1,0$). Let $H=\left(\lambda, \mu, 0,(0)_{k<l}\right) \in \mathbb{H}(\lambda)$. The action of f_{1} on $\mathbb{H}(\lambda)$ is computed as follows by Algorithm $\mathbb{8}$. Let $i=1$. Set $F=[0]$. Since $U_{11}-U_{22}+F[0]=1$, set $F=[0,1]$. Set $k_{f_{i} H}=1$. Since $F[1]=1>0$, we have $k_{f_{i} H}=1$. Then set $\mu_{1}=\mu_{1}-1=1, \mu_{2}=\mu_{2}+1=2, U_{11}=U_{11}-1=1$,

```
Algorithm 9 Algorithm for \(e_{i}\) on \(\mathbb{H}(\lambda)\)
Input: \(H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda), i \in I\)
Output: \(e_{i} H\)
    if \(\varepsilon_{i}(H)=0\) then
        return 0
    end if
    \(E:=[0]\)
    for \(k=1,2, \ldots, i+1\) do
        \(E:=E . \operatorname{append}\left(\max \left(U_{i+2-k, i}-U_{i+1-k, i+1}+E[k-1], 0\right)\right)\)
    end for
    \(k_{e_{i} H}:=1\)
    for \(k=i+1, i, \ldots, 1\) do
            if \(E[k]<0\) then
                    \(k_{e_{i} H}:=k-1\)
                    break
            end if
    end for
    \(\mu_{i}:=\mu_{i}+1\)
    \(\mu_{i+1}:=\mu_{i+1}-1\)
    \(U_{k+2-k_{e}, i}:=U_{k+2-k_{e_{i}}, i}+1\)
    \(U_{k+2-k_{e}, i+1}:=U_{k+2-k_{e i}, i+1}-1\)
    return \(\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right)\)
```

and $U_{12}=U_{12}+1=1$. Then we have $f_{1} H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right)$. See Fig. 因.

Fig. 6: Action of f_{1} on the $U_{q}\left(\mathfrak{s l}_{4}\right)$-crystal $\mathbb{H}\left(\Lambda_{1}+\Lambda_{3}\right)$

Proposition 52

For $\lambda \in P^{+}$, let $H \in \mathbb{H}(\lambda)$. Let $i \in I$.

1. Algorithm ${ }^{6}$ with inputs H and i yields $\varphi_{i}(H)$.
2. Algorithm \square with inputs H and i yields $\varepsilon_{i}(H)$.
3. Let K be the result of Algorithm 8 with inputs H and i. Then, $K=f_{i} H$.

4．Let K be the result of Algorithm回 with inputs H and i ．Then，$K=e_{i} H$ ．
Proof（III）and（지）immediately follow from Theorem［42．（B］）is proved if $k_{f_{i} H}$ in Algorithm $\mathbb{\square}$ corresponds to the one in Theorem 42 ．

For $\lambda \in P^{+}$，let $H=\left(\lambda, \mu, 0,\left(U_{i j}\right)_{i<j}\right) \in \mathbb{H}(\lambda)$ ．We can assume $\varphi_{i}(H)>0$ ．This means that $k_{f_{i} H}$ is defined and

$$
\varphi_{i}(H)=\sum_{k=k_{f i} H}^{n}\left(U_{k i}-U_{k+1, i+1}\right) .
$$

In particular，$\varphi_{i}^{\left(k_{f_{i}} H^{-1}\right)}(H)=0$ and $\varphi_{i}^{\left(k_{f_{H} H}\right)}(H)=U_{k_{f_{i} H, i}}-U_{k_{f_{i} H}+1, i}>0$ hold by the definition of $k_{f_{i} H}$ ．Then we have

$$
\varphi_{i}^{(m)}(H)=\sum_{k=k_{f_{i} H}}^{m}\left(U_{k i}-U_{k+1, i+1}\right)>0 \quad\left(m=k_{f_{i} H}, k_{f_{i} H}+1, \ldots, i\right) .
$$

By Theorem［2］，F in Algorithm $\mathbb{\nabla}$ is an array of $\varphi_{i}^{(l)}(H)$ such that $F[l]=\varphi_{i}^{(l)}(H)$ for $l \in[i]$ ．Then $\max \{k \in[i] \mid F[k]<0\}=k_{f_{i} H}-1$ holds，hence $k_{f_{i} H}$ in Algorithm $⿴ 囗 十 \|$ corresponds to the one in Theorem［42．Similarly，（4）can be shown．

4 Examples by khive－crystal

In this section，we show some examples of executing the algorithms given in Section 3．These examples are computed by the originally implemented Python package named khive－crystal ［13］．Then we also give the usage of khive－crystal．

In khive－crystal，K－hive can be declared by the function khive．Furthermore，we can show a K－hive as an image using the function view．The following code is an example of functions of khive and view．
» from khive＿crystal import khive，view
» $\mathrm{H}=$ khive（
．． $\mathrm{n}=4$ ，alpha $=[3,2,1,0]$ ，beta $=[3,2,1,0]$ ，gamma $=[0,0,0,0], \mathrm{Uij}=[[0,0,0],[0,0],[0]]$
．．）
» H
KHive $(\mathrm{n}=4$ ，alpha $=[3,2,1,0]$ ，beta $=[3,2,1,0]$ ，gamma $=[0,0,0,0], \mathrm{Uij}=[[0,0,0],[0,0],[0]])$
» view（H）

The following codes compute the crystal structure on $U_{q}\left(\mathfrak{s l}_{3}\right)$-crystal $\mathbb{H}\left(\Lambda_{2}\right)$ by Algorithms \mathbb{D} and
» from khive_crystal import e, epsilon, f, khive, phi, view
» $\mathrm{H}=\operatorname{khive}(\mathrm{n}=3$, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
» view(H)

» $\mathrm{f}(\mathrm{i}=1)(\mathrm{H})$
\# None
» view($\mathrm{f}(\mathrm{i}=2)(\mathrm{H}))$

The crystal graph of $\mathbb{H}\left(\Lambda_{2}\right)$ can be shown by the function called crystal_graph, where the function khives is the function to declare $\mathbb{H}\left(\Lambda_{2}\right)$.
» from khive_crystal import khives, crystal_graph
» crystal_graph(khives($\mathrm{n}=3$, alpha=[1, 1, 0]))

Note that the crystal graph is realized by the open source graph visualization software called Graphviz.

The crystal structure on $\mathbb{H}(\lambda)\left(\lambda \in P^{+}\right)$is defined by algorithms of the crystal structure of $\mathbb{H}\left(\Lambda_{k}\right)(k \in I), \Psi_{\lambda}, \Psi$, and Ψ^{-1}. Then we first show an example for Algorithms [], Ψ, and \mathbb{Z}, which are implemented as functions psi_lambda, psi, and psi_inv, respectively. The following code is an example for $\Psi_{(3,3,0)}$ and Ψ for $\mathbb{H}((3,3,0))$.
» from khive_crystal import khive, psi, psi_lambda, view
» $\mathrm{H}=\operatorname{khive}(\mathrm{n}=3$, alpha $=[3,3,0]$, beta $=[3,3,0]$, gamma $=[0,0,0]$, $\mathrm{Uij}=[[0,0],[0]])$ » psi_lambda(H)
[
KHive($n=3$, alpha $=[2,2,0]$, beta $=[2,2,0]$, gamma $=[0,0,0]$, Uij $=[[0,0],[0]])$,
KHive($\mathrm{n}=3$, alpha $=[1,1,0]$, beta $=[1,1,0]$, gamma $=[0,0,0]$, Uij $=[[0,0],[0]])$
]
» view(psi_lambda(H))


```
" psi(H)
[
```

$\operatorname{KHive}(\mathrm{n}=3$, alpha $=[1,1,0]$, beta $=[1,0,0]$, gamma $=[0,0,0]$, $\operatorname{Uij}=[[0,0],[0]])$,
KHive ($\mathrm{n}=3$, alpha $=[1,1,0]$, beta $=[1,0,0]$, gamma $=[0,0,0]$, $\mathrm{Uij}=[[0,0],[0]])$,
KHive($\mathrm{n}=3$, alpha $=[1,1,0]$, beta $=[1,1,0]$, gamma $=[0,0,0]$, $\mathrm{Uij}=[[0,0],[0]])$
]
» view($\mathrm{psi}(\mathrm{H})$)

\otimes

Then we show examples of algorithms of f_{i} for $\mathbb{H}(\lambda)$. The following code is an example of f_{2} for $\mathbb{H}((3,3,0))$.

```
» from khive_crystal import khive, psi, psi_inv, view
» H = khive(n=3, alpha=[3, 3, 0], beta=[3, 3, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
" psi_inv(f(i=2)(psi(H))) # = fi}(H
```


The crystal structure on $\mathbb{H}(\lambda)\left(\lambda \in P^{+}\right)$is also computed by Algorithms $\mathbb{\otimes}$ and \mathbb{Q}.
» from khive_crystal import khive, e, epsilon, f, phi
» $\mathrm{H}=$ khive($\mathrm{n}=3$, alpha $=[3,3,0]$, $\operatorname{beta}=[3,1,0]$, gamma $=[0,0,0]$, $\mathrm{Uij}=[[0,0],[0]])$ " phi($\mathrm{i}=2$)(H)

3
» view(f(i=2)(H))

The crystal graph of $\mathbb{H}((3,3,0))$ is the following.
» from khive_crystal import khives, crystal_graph

```
» crystal_graph(khives(n=3, alpha=[3, 3, 0]))
```


5 Concluding Remarks

In this paper, two approaches are given for a set of algorithms for crystal structures on $\mathbb{H}(\lambda)$ for $\lambda \in P^{+}$. One approach can be obtained by considering $\mathbb{H}(\lambda)$ as a subset of a tensor product of the form $\mathbb{H}\left(\Lambda_{k}\right)$ with $k \in I$. This method also provides an algorithm to embed a K-hive into the tensor products of K-hives whose right edge labels are determined by a fundamental weight. The other approach can be obtained by considering a combinatorial description of the crystal structure on $\mathbb{H}(\lambda)$.

Recall that $\mathbb{H}(\lambda)$ realizes the crystal basis of the irreducible highest weight module of the highest weight λ. Then, we can compute the action of $U_{q}\left(\mathfrak{S I}_{n}\right)$ on $V(\lambda)$ at $q=0$ and apply it to compute other representation problems by crystals of K-hives. For example, the tensor product decomposition problem may be one of the problems, which can be computed from crystals of K-hives.

Acknowledgements

We would like to express our gratitude to Professor Itaru Terada of the University of Tokyo for his valuable comments and constructive suggestions. Additionally, we would like to thank the anonymous referees for their helpful suggestions in improving our manuscript.

References

[1] D. Bump and A. Schilling. Crystal bases. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. Representations and combinatorics.
[2] V. G. Drinfeld. Hopf algebras and the quantum Yang-Baxter equation. Dokl. Akad. Nauk SSSR, 283(5):1060-1064, 1985.
[3] J. Hong and S.-J. Kang. Introduction to Quantum Groups and Crystal Bases, volume 42 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[4] M. Jimbo. A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation. Lett. Math. Phys., 10(1):63-69, 1985.
[5] M. Kashiwara. Crystalizing the q-analogue of universal enveloping algebras. Comm. Math. Phys., 133(2):249-260, 1990.
[6] M. Kashiwara. On crystal bases of the Q-analogue of universal enveloping algebras. Duke Math. J., 63(2):465-516, 1991.
[7] M. Kashiwara and T. Nakashima. Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra, 165(2):295-345, 1994.
[8] R. C. King, C. Tollu, and F. Toumazet. Stretched Littlewood-Richardson and Kostka coefficients. In Symmetry in physics, volume 34 of CRM Proc. Lecture Notes, pages 99-112. Amer. Math. Soc., Providence, RI, 2004.
[9] R. C. King, C. Tollu, and F. Toumazet. The hive model and the factorisation of kostka coefficients. Sém. Lothar. Combin., 54A:B54Ah, 22 pp, 2006.
[10] R. C. King, C. Tollu, and F. Toumazet. The hive model and the polynomial nature of stretched Littlewood-Richardson coefficients. Sém. Lothar. Combin., 54A:B54Ad, 19 pp, 2006.
[11] A. Knutson and T. Tao. Apiary views of the berenstein-zelevinsky polytope, and klyachko's saturation conjecture. arXiv preprint arXiv:9807160v1, 1998.
[12] A. Knutson and T. Tao. The honeycomb model of $\mathrm{GL}_{n}(\mathbf{C})$ tensor products. I. Proof of the saturation conjecture. J. Amer. Math. Soc., 12(4):1055-1090, 1999.
[13] S. Narisawa. khive-crystal (0.1.0). https://github.com/snrsw/khive-crystal, 2022.
[14] S. Narisawa and K. Shirayanagi. Crystal structure on K-hives of type A. Communications in Algebra, 50(12):5266-5283, 2022.
[15] J. R. Stembridge. A local characterization of simply-laced crystals. Trans. Amer. Math. Soc., 355(12):4807-4823, 2003.
[16] I. Terada, R. C. King, and O. Azenhas. The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection. SIAM J. Discrete Math., 32(4):2850-2899, 2018.

[^0]: *7520002n@st.toho-u.jp
 ${ }^{\dagger}$ kiyoshi.shirayanagi@is.sci.toho-u.ac.jp

