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Abstract

We show correctness and termination of signature-based algorithms for computing Gröbner
bases, together with some remarks on those algorithms. Compared to rewrite basis algorithm
introduced by Eder and Roune in 2012, we describe an equivalent algorithm called “alterna-
tive rewrite basis algorithm” more concretely, with giving self-contained proofs of the cor-
rectness and the termination of the algorithm more clearly and transparently. The original
rewrite basis algorithm seems to be designed so that it is efficient when POT is chosen as a
module order and it proceeds incrementally like: computing Gröbner bases of ⟨ f1⟩, ⟨ f1, f2⟩,
⟨ f1, f2, f3⟩, . . . , ⟨ f1, f2, . . . , fm⟩ in order for polynomials { fi}i=1,2,3,...,m. We clarify the reason of
the efficiency in that case. If we use the original rewrite basis algorithm with a module order
other than POT, we compute extra zero reductions. The algorithm presented in this paper is
modified to keep the efficiency as much as possible when we choose a module order other than
POT.

Keywords: Gröbner Basis, rewrite basis algorithm, signature-based algorithm

1 Introduction
Gröbner bases are one of important research topics in algebra and is widely used in applications.
It is well-known that Gröbner bases are utilized for solving systems of polynomial equations. In
cryptography, Gröbner basis method was utilized for breaking a challenge of the first hidden field
equations (HFE) crypto system [10]. For other applications like coding theory, statistics and in-
teger programming problem etc., it is possible to obtain a solution by converting a problem into
a polynomial system and computing its Gröbner basis. Some engineering problems are necessary
to be dealt with problems of polynomial systems including parameters. For these problems, there
exits algorithms for computing comprehensive Gröbner bases. In the algorithms, Gröbner bases
are computed multiple times. In summary, Gröbner bases have a wide range of applications. It can
be expected that many works for such applications would progress by improving Gröbner basis
algorithms, as it accelerates computation of Gröbner bases.
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In 1964, Buchberger [2] introduced the notion of Gröbner bases and proposed an algorithm for
computing Gröbner bases. Since then, various improvements about the algorithm have been pro-
posed. As for computing a Gröbner basis, it is required to simplify polynomials, called a reduction.
Elements of a Gröbner basis are generated by reducing polynomials, and some polynomials are re-
duced to zero. The computations of zero reductions do not give any information of the Gröbner
basis. Moreover the number of zero reductions is tend to be larger than that of nonzero reductions.
Therefore, in order to decrease amount of calculations, methods for detecting polynomials which
are reduced to zero have been studied by many researchers.

One important improvement of Gröbner basis algorithms is F5 algorithm proposed by Faugère
in 2002 [9]. F5 algorithm discards many polynomials that are reduced to zero, comparing to con-
ventional algorithms.

When first proposed, the algorithm was complicated and the proof was incomplete. Since then,
F5 has been deeply studied and accurate proofs of correctness and termination have been submitted
(main references are [5, 11, 12, 14, 15]). Several algorithms and methods for improving F5 have
been proposed (main references are [1, 3, 4, 6, 8, 13]). F5 is now recognized as one of signature-
based algorithms. The paper [7] compiled studies of signature-based algorithms, so that we can
overview research of signature-based algorithms. In the paper, signature-based algorithms are
generalized as rewrite basis algorithm (RB) [6]. The algorithm in [1] called Arri and the algorithm
in [13] called GVW are introduced as RB with RAT selected for a rewrite order. The explanations
and the definitions of rewrite basis algorithm, a rewrite order and RAT are not given in this paper
because they are too long. When we choose RAT for a rewrite order, rewrite basis algorithm
becomes the most efficient. The proofs of correctness and termination in [7] are not self-contained
unfortunately. Additionally, RB is not provided as an efficient algorithm in case we choose module
orders other than POT (position over term) because RB is introduced as a generalized signature-
based algorithm.

In this paper, we introduce alternative rewrite basis algorithm (altRB) (see Algorithm 4 in
Section 6). This algorithm is efficient for an arbitrary module order other than POT, and more-
over it is concrete enough to be implemented. As the main results of this paper, we prove the
correctness (Theorem 20) and the termination (Theorem 21) of altRB. By designing the algorithm
concretely, the proofs of the correctness and the termination are clearer and more transparent. The
proofs are done by several steps. In each step, we discuss the correctness and the termination of
an algorithm. The algorithms are fundamental signature-based semi-algorithm1) (fundSB), simple
signature-based algorithm (simpleSB), simple syzygy signature-based algorithm (syzSB), alterna-
tive rewrite basis algorithm (altRB). The algorithms in earlier steps are less complex. We believe
that the proofs of Theorem 20 and Theorem 21 are easy for the reader to understand, as so are the
proofs of each step. In Section 7, we prove that RB has an exceptional advantage when POT is
chosen for a module order and RB proceeds incrementally. On the other hand, altRB is designed
to be suitable for an arbitrary module order.

This paper is organized as follows. In Section 2, we recall notations and definitions in [7] of
signature-based algorithms. In Section 3, we focus on that signature-based algorithms compute a
Gröbner basis in the ascending order of signature. In order to look at the behavior of the algorithms,
we study fundamental signature-based semi-algorithm (fundSB), which is simpler than subsequent
algorithms. Although this semi-algorithm does not terminate, it helps us grasp the idea and how
signature-based algorithms work, and also make clear the proofs of the correctness and the termina-
tion of the subsequent algorithms. In Section 4, we study a basic signature-based algorithm, which
terminates in finite steps. The algorithm is called “simple signature-based algorithm (simpleSB)”.

1)When the word semi-algorithm is used, it is intended that the process may not terminate. The word semi-algorithm is
used only for fundamental signature-based semi-algorithm (fundSB).
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It is essentially equivalent to the algorithm genSB [7]. However, the proofs of the correctness and
the termination are partially different to those of [7] and are described in detail. In Section 5, we
focus on methods for detecting polynomials which are reduced to zero. The methods are specific
to signature-based algorithms. Simple syzygy signature-based algorithm (syzSB) is considered to
illustrate the method. In Section 6, alternative rewrite basis algorithm (altRB) is introduced. We
show the termination and the correctness of altRB. In Section 7, we discuss the number of zero
reductions and module orders as in one previous paragraph.

It is known that signature-based algorithms compute not only a signature Gröbner basis but
also a Gröbner basis of the syzygy module for a given input system. syzSB and altRB outputs
the leading terms of Gröbner basis of the syzygy module. If you give small modification, they can
output a Gröbner basis itself. But we do not refer to the fact and its proofs, see [13] and [7].

2 Notation
Let R be a polynomial ring over a field K. Let us denote K \ {0} by K×. For a, b ∈ R, we write a | b
if b is divisible by a.

Let f1, f2, . . . , fm be elements of R. Let e1, e2, . . . , em be the standard basis of a free module Rm.
Consider the homomorphism

¯: Rm −→ R

defined by

α =

m∑
i=1

aiei 7−→ α =

m∑
i=1

ai fi,

where a1, . . . , am ∈ R, especially ei = fi holds.
We choose a monomial order ≤ on R, and choose a module order ≼. The module order is

required to be compatible with the monomial order, that means: aei ≼ bei for i = 1, . . . ,m for all
monomials a, b ∈ R in case a ≤ b. An element of Rm of the form aei for a monomial a of R is called
a term of Rm. Let α = aei and β = be j be terms, if there exists c ∈ K× such that a = cb and i = j,
we write α ≃ β and we say that α and β are equivalent. If a | b and i = j, we write α | β. For f ∈ R,
LT( f ) denotes the leading term of f with respect to the monomial order. For α ∈ Rm, the signature
s(α) of α is defined to be the leading term of α with respect to the module order.

Let G be a subset of Rm. For α, α′ ∈ Rm, we say that α is s-reduced to α′ if there exist β ∈ G
and b ∈ R satisfying the three conditions:

(a) LT(bβ) = t for a (certain) monomial t in α

(b) s(bβ) ≼ s(α)

(c) α′ = α − bβ.

At this time, we call β a reducer. We say that α is singularly s-reduced to α′ if the condition (b)
above is replaced by s(bβ) ≃ s(α), and otherwise that α is regularly s-reduced to α′. If there exists
c ∈ K such that LT(bβ) = c LT(α), the s-reduction is called top s-reduction and otherwise called
tail s-reduction. If the α ∈ Rm cannot be s-reduced, we say that α is completely s-reduced. If the
α ∈ Rm cannot be regularly top s-reduced, we say that α is completely regularly top s-reduced. If
the α ∈ Rm can be both neither regularly top s-reduced nor regularly tail s-reduced, we say that α is
completely regularly full s-reduced. If α ∈ Rm is completely s-reduced and α is 0 ∈ R, then we say
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that α is completely s-reduced to 0 ∈ R (Remark: it does not mean that α is completely s-reduced
to 0 ∈ Rm).

A subset G ⊆ Rm is a signature Gröbner basis up to signature T if all α ∈ Rm with s(α) ≺ T are
completely s-reduced to 0 ∈ R with respect to G. A subset G ⊆ Rm is a signature Gröbner basis
in signature T if all α ∈ Rm with s(α) ≺ T are completely s-reduced to 0 ∈ R with respect to G. A
subset G ⊆ Rm is a signature Gröbner basis if all α ∈ Rm are s-reduced to 0 ∈ R with respect to
G. The signature-based algorithms compute a signature Gröbner basis. If G is a signature Gröbner
basis, then {g | g ∈ G} is a Gröbner basis of the ideal generated by {g | g ∈ G}.

Proposition 1
Let I be the ideal generated by { f1, . . . , fm}, let G be a signature Gröbner basis. Then, {g | g ∈ G}
is a Gröbner basis of the ideal ⟨g | g ∈ G⟩.

Proof First, we show α ∈ I for any α ∈ G. Let α ∈ G, which is written as
∑m

i=1 riei, for ri ∈ R.
Then α =

∑m
i=1 riei =

∑m
i=1 ri fi.

Assume that {g | g ∈ G} is not a Gröbner basis of I. Then, there exists h ∈ I such that h is not top
reducible by {g | g ∈ G}. As h ∈ I, one can write h as

∑m
i=1 ai fi for ai ∈ R. Put β =

∑m
i=1 aiei ∈ Rm.

Then, we have β = h. Since G is a signature Gröbner basis, β is top s-reducible. This means that h
is top reducible. This is a contradiction.

A signature Gröbner basis G is minimal if there does not exist an element α in G which top
s-reduces any other elements in G \ {α}. We also use the word “minimal” for a signature Gröbner
basis in G and up to G.

3 Fundamental signature-based semi-algorithm
In this section, fundamental signature-based semi-algorithm (fundSB) is considered. It helps us to
comprehend how signature-based algorithms work. Specifically almost all signature-based algo-
rithms proceed in the ascending order of signatures. fundSB is a prototype of them. Algorithm 1
is the pseudocode of fundSB.

Algorithm 1 Fundamental signature-based semi-algorithm (fundSB)

Input : a finite subset F = { f1, . . . , fm} of R.

Step 1 α← the minimal term in Rm which is bigger than the terms computed before
Step 2 α′ ← result of completely regularly top s-reducing α by G
Step 3 (i) If α′ = 0

Go to Step 1
(ii) If α′ , 0

(a) If α′ is singularly top s-reducible by G
Go to Step 1

(b) If α′ is not singularly top s-reducible by G
G ← G ∪ {α′}
Go to Step 1

fundSB does not terminate, because it will compute all terms in Rm and the number of elements
of Rm are infinite. However, we can prove the following properties:
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(A) at the end of Step 3, G is a signature Gröbner basis in α,

(B) at the end of Step 1, G is a signature Gröbner basis up to α.

If (A) is satisfied, (B) is true because fundSB computes in the ascending order of terms in Rm step
by step. We shall prove (A) in Proposition 5. For this, we need Lemmas 2, 3 and 4 below.

Remark : fundSB could terminate, if we modify fundSB as following:

(1) Select a term β ∈ Rm, a monomial order and a module order such that the number of terms
up to β is finite.

(2) Terminate fundSB when the calculation progresses to β.

In this case, fundSB outputs a signature Gröbner basis up to β.

Lemma 2 is called singular criterion [3].

Lemma 2
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α and β in Rm satisfy

(1) s(α) = s(β) ≼ T ,

(2) α and β are completely regularly top s-reduced by G.

Then, LT(α) = LT(β). Moreover, if α and β are completely regularly s-reduced, then α = β.

Proof (The former) Assume that LT(α) , LT(β). Then, either LT(α − β) = LT(α) or LT(α − β) =
LT(β) is satisfied. Since s(α) = s(β), we have s(α−β) ≺ s(α) ≼ T . Therefore, α−β is top s-reducible
by G, that is, there exists a pair (γ, a) ∈ G × R such that s(aγ) ≼ s(α − β) and LT(aγ) = LT(α − β).
This aγ satisfies that s(aγ) ≺ s(α) = s(β) and either LT(aγ) = LT(α) or LT(aγ) = LT(β). Then, aγ
regularly top s-reduce α or β. This contradicts that α and β are completely regularly top s-reduced.

(The latter) Assume that α − β , 0. The leading term of α − β is the term included in either α
or β. Since s(α) = s(β), we have s(α−β) ≺ s(α) ≼ T . Therefore, α−β is top s-reducible by G, that
is, there exists a pair(γ, a) ∈ (G,R) such that s(aγ) ≼ s(α − β) and LT(aγ) = LT(α − β). This aγ
satisfies that s(aγ) ≺ s(α) = s(β) and there exists a term in α or β such that the term is the same as
LT(aγ). Then, aγ regularly s-reduce α or β. This contradicts that α and β are completely regularly
s-reduced.

Let T be a term in Rm. When we have a signature Gröbner basis up to T ∈ Rm, and let α ∈ Rm

satisfy s(α) ≼ T and α is completely regularly top s-reduced and singularly top s-reducible, then
we can discard α thanks to Lemmas 3 and 4 below.

Lemma 3
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ Rm and β ∈ G satisfy

(1) s(α) ≼ T ,

(2) α is completely regularly top s-reduced by G,

(3) there exists a ∈ R which satisfies s(α) ≃ s(aβ) and LT(α) = LT(aβ).

Then, s(α) = s(aβ).
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Proof Assume that s(α) , s(aβ). Then, there exists c ∈ K that satisfies c , 1 and s(α) = cs(aβ).
Since s(α − caβ) ≺ s(α) ≼ T , we have that α − caβ is top s-reducible by G. Therefore, there
exists a pair (γ, b) ∈ G × R that satisfies s(bγ) ≼ s(α − caβ) and LT(bγ) = LT(α − caβ). Since
LT(α − caβ) ≃ LT(α), we have that γ regularly top s-reduce α. This contradicts that α is completely
regularly top s-reduced.

Lemma 4
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ Rm satisfies

(1) s(α) ≼ T ,

(2) α is completely regularly top s-reduced by G,

(3) α is singular top s-reducible by G.

Then, α is s-reduced to 0 ∈ R by G.

Proof Let β ∈ G be a reducer which singularly top s-reduces α. From Lemma 3, there exists
a ∈ R that satisfies LT(α) = LT(aβ) and s(α) = s(aβ). Then, we have that s(α − aβ) ≺ s(α), so
α − aβ is s-reduced to 0 ∈ R by G.

Let us prove (A) mentioned in the second paragraph of this section.

Proposition 5
At the end of Step 3 in fundSB, G is a signature Gröbner basis in α at the every loop.

Proof Let α be the term chosen in the latest Step 1. Let α′ be the result of completely regularly
top s-reducing α. Let G be a signature Gröbner basis up to α. We prove that G is a signature
Gröbner basis in α after the end of Step 3, that is, all β ∈ Rm with s(β) ≼ α are s-reduced to 0 ∈ R
by G.

Since G is a signature Gröbner basis up to α, then β ∈ Rm with s(β) ≺ α is s-reduced to 0 ∈ R by
G. Then, let β satisfy s(β) ≃ α. As we s-reduce β by G step by step, suppose β would be changed
as follows: β → β(1) → β(2) → · · · → β(i) → · · · . Assume an s-reduction such that s(β(i)) = s(aγ)
(a ∈ R, γ ∈ G) occurs for a certain i. Since s(β(i+1)) ≺ α for the i, in this case, β is s-reduced
to 0 ∈ R. Suppose that such an s-reduction does not occur. Let β′ be the result of completely
s-reducing β. Note that s(β′) ≃ α and β′ is completely regularly top s-reduced. From Lemmas 2
and 3, there exists c ∈ K such that s(α′) = cs(β′) and LT(α′) = c LT(β′).

We consider the result of s-reducing β in the following three cases according to how α′ was
handled in Step 3.

(i) If α′ = 0, then β′ as well as α′ is s-reduced to 0 ∈ R by Lemma 2.

(ii) If α′ , 0 and α′ is singularly top s-reducible, then β′ as well as α′ is singularly top s-
reducible. By Lemma 4, we have that β′ is s-reduced to 0 ∈ R.

(iii) If α′ , 0 and α′ is not singularly top s-reducible, then β′ is singularly top s-reducible by
α′ since s(α′) = cs(β′) and LT(α′) = c LT(β′), and α′ is included in G. By Lemma 4, β′ is
s-reduced to 0 ∈ R.

From the above, we have proved that all β ∈ Rm with s(β) ≼ α are s-reduced to 0 ∈ R by G.
Thus, G is a signature Gröbner basis in α at the end of Step 3.

The set G computed in fundSB is minimal.
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Lemma 6
Let T ∈ Rm be a term chosen at Step 1 in fundSB. Let G in fundSB be the set after Step3 of T .
Then, G is a minimal signature Gröbner basis in T .

Proof By Proposition 5, G is a signature Gröbner basis in T . Let α be an element in G. For
β ∈ G with s(β) ≺ s(α), clearly β is not top s-reducible by α. For β ∈ G with s(β) ≽ s(α), β is not
regularly top s-reducible by α because of Step 2. Moreover, β is not singularly top s-reducible by
α because of Step 3 (ii) (b). Then, β is not top s-reducible by α. Thus, there is no element in G
which top s-reduces any other elements in G. Therefore, G is a minimal signature Gröbner basis
in T .

4 Simple signature-based algorithm
In this section, we introduce simple signature-based algorithm (simpleSB), and show that it termi-
nates and outputs a signature Gröbner basis. Before introducing the algorithm, we define an S-pair,
which is an analogy of S-polynomial. The S-pair of α, β ∈ Rm is defined to be

spair(α, β) =
λ

LT(α)
α − λ

LT(β)
β,

where λ is the least common multiple (of monomials) as λ = lcm(LT(α),LT(β)). If

s

(
λ

LT(α)
α

)
≃ s

(
λ

LT(β)
β

)
,

we say that the S -pair is singular, otherwise, we say that the S-pair regular. Algorithm 2 is
the pseudocode of simpleSB. Note that simpleSB outputs a minimal signature Gröbner basis by
Lemma 6.

Algorithm 2 Simple signature-based algorithm (simpleSB)

Input : a finite subset F = { f1, . . . , fm} of R.
Output: a minimal signature Gröbner basis G of F.

Step 0 G ← ∅, P← {e1, . . . , em}
Step 1 If P = ∅, return G

α← the minimal term in P
P← P\{α}

Step 2 α′ ← result of completely regularly top s-reducing α by G
Step 3 (i) If α′ = 0

Go to Step 1
(ii) If α′ , 0

(a) If α′ is singularly top s-reducible by G
Go to Step 1

(b) If α′ is not singularly top s-reducible by G
P← P ∪ {s(spair(α′, β)) | β ∈ G, spair(α′, β) is regular} (#)
G ← G ∪ {α′}
Go to Step 1
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Remark : In Step 2 of Algorithm 2, we execute only regularly “top” s-reduction depending on
the description of the algorithm. However, we can execute regularly “tail” s-reduction, and the
correctness and the termination of the algorithm are not affected by the modification. In terms of
(#) in simpleSB, it is sufficient to leave only one term α among terms which are equivalent to α
in P. Even if more than two equivalent terms are left in P, simpleSB terminates and outputs a
signature Gröbner basis.

Let us give an outline of the proofs of the correctness and the termination. The difference
between fundSB and simpleSB is that simpleSB computes terms in Rm that appear in Step 3 (ii)
(b). In Proposition 12, we prove that G is a signature Gröbner basis in α when Step 3 for α is
finished. It follows from Lemma 11 that it is not necessary to compute terms ≼ α that do not
appear at (#). The termination of simpleSB is proved by Proposition 13. When the algorithm
terminates, G is a signature Gröbner basis, by Lemma 11 and Propositions 14 and 12.

Lemmas 7, 8, 9 and 10 are used for proving Lemma 11.

Lemma 7
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ G and let a be a
monomial in R satisfy

(1) s(aα) ≼ T ,

(2) aα is regularly top s-reducible by G.

Then, there exists an S-pair a′α − bβ (a′ and b are monomials in R, β is in G) such that

(3) s(a′α − bβ) = s(a′α),

(4) a′ | a.

Proof Let a′ be the minimal monomial in the set consisting of the monomials r ∈ R satisfying
that r | a and rα is regularly top s-reducible. Since a′α is regularly top s-reducible, there exists a
pair (β, b) ∈ G × R such that s(a′α) ≻ s(bβ) and LT(a′α) = LT(bβ). Let d = a′ LT(α) = b LT(β).
Assume that GCD(a′, b) = m with m , 1. Then, a′ and b are written as a′ = ma′′ and b = mb′

such that GCD(a′′, b′) = 1. For a′′α and b′β, note that s(a′α) ≻ s(bβ) leads to s(a′′α) ≻ s(b′β) and
a′ LT(α) = b LT(β) leads to a′′ LT(α) = b′ LT(β). This means that a′′α is regularly top s-reducible
and a′′ < a′. This contradicts the minimality of a′. Therefore, m = 1 and GCD(a′, b) = 1. There
exists e ∈ K× such that d = e lcm(LT(α),LT(β)). Then, we have

a′α − bβ =
d

LT(α)
α − d

LT(β)
β =

e lcm(LT(α),LT(β))
LT(α)

α − e lcm(LT(α),LT(β))

LT(β)
β.

This is an S-pair satisfying (3) and (4).

Lemma 8
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ Rm satisfy

(1) s(α) ≼ T ,

(2) α is completely regularly top s-reduced by G.

Then, any pair (β, a) ∈ G × R with s(α) = s(aβ) satisfies LT(α) ≤ LT(aβ).
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Proof Assume that there exists a pair (β, a) ∈ G × R such that s(α) = s(aβ) and LT(α) > LT(aβ).
Let γ be the result of completely regularly top s-reducing aβ. Then, we have LT(α) > LT(aβ) ≥
LT(γ) and s(α) = s(γ). This contradicts Lemma 2.

Lemma 9
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ G and let a be a
monomial in R satisfy

(1) s(aα) ≼ T ,

(2) aα is completely regularly top s-reduced by G.

Then, there do not exists a pair (β, b) ∈ G × R such that

(3) s(aα − bβ) = s(aα),

(4) aα − bβ is a regular S-pair.

Proof We prove the contraposition. Assume that there exists a pair (β, b) ∈ G × R satisfying (3)
and (4). This means that s(aα) ≻ s(bβ) and LT(aα) = LT(bβ). Then, aα is regularly top s-reducible
by bβ.

Lemma 10
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α and β in Rm satisfy

(1) s(α) ≼ T ,

(2) α is completely regular top s-reduced,

(3) s(β) ≃ s(α),

(4) LT(β) > LT(α).

Then, β is regularly top s-reducible.

Proof Assume that β is not regularly top s-reducible, that is, β is completely regularly top s-
reduced by G. From Lemma 2, we have LT(β) = LT(α). This contradicts LT(β) > LT(α).

Lemma 11 means that we do not need to compute terms that do not appear as signatures of
regular S-pairs.

Lemma 11
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ Rm satisfies

(1) s(α) ≃ T ,

(2) s(α) is equivalent to a signature of a regular S-pair that does not appear in Step 3 (ii) (b).

Let α′ be the result of completely regularly top s-reducing α by G. Then, α′ is singularly top
s-reducible by G. In particular, G is a signature Gröbner basis in T .
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Proof Let β ∈ G and let a be a monomial in R satisfying s(aβ) = s(α′) such that LT(aβ) is
minimal. We prove that LT(aβ) ≃ LT(α′). By Lemma 8, we have LT(α′) ≤ LT(aβ).

Assume that LT(α′) < LT(aβ). By Lemma 10, aβ is regularly top s-reducible. Consider a′β
such that a′ is a monomial in R and the monomial a/a′ ∈ R r K. Assume that a′β is regularly
top s-reducible by G. And let γ be the result of regularly top s-reducing a′β. Then, we have
LT(a′β) > LT(γ). As a′ < a, we have s(γ) = s(a′β) ≺ s(aβ) ≃ T . This means that γ is top
s-reducible. However, γ is completely regularly s-reduced, then γ is singularly top s-reducible. By
Lemma 3, there exists a pair (ω, r) ∈ G × R such that s(γ) = s(rω) and LT(γ) = LT(rω). Note that
s(a′β) = s(rω) and LT(a′β) > LT(rω). By multiplying the both sides of the two equations by a/a′,
we have s(aβ) = a/a′s(rω) and LT(aβ) > a/a′ LT(rω) and note that a

a′ is a term of R. This means
that there exists a pair (ω, ar/a′) ∈ G×R such that s((ar/a′)ω) = s(aβ) and LT((ar/a′)ω) < LT(aβ).
This contradicts the minimality of LT(aβ).

Therefore, a′β with a/a′ ∈ RrK is not regularly top s-reducible. From Lemmas 7 and 9, there
exists an S-pair aβ − bω′ such that s(aβ − bω′) = s(aβ) for b ∈ R and ω′ ∈ G. This means that a
regular S-pair whose signature is s(aβ) = α appears in Step 3 (ii) (b) (#). This is a contradiction.
Thus, we have LT(α′) ≃ LT(aβ). Then, α′ is singularly top s-reducible by G.

It follows from Lemma 4 that α′ is s-reduced to 0 ∈ R by G. Thus, G is a signature Gröbner
basis in T .

Proposition 12
Let T ′ in Rm be a term chosen at Step 1 in Algorithm 2, and let T be the term chosen just before
T ′. Assume that G in Algorithm 2 is a signature Gröbner basis in T after Step 3 of the loop starting
with α = T . Then, G is a signature Gröbner basis in T ′ after Step 3 of the loop starting with α = T ′.

Proof First, we prove that G is a signature Gröbner basis up to T ′ when T ′ is chosen in Step
1. Suppose G is not a signature Gröbner basis up to T ′. Consider the set of terms α ∈ Rm with
T ≺ α ≺ T ′ satisfying that G is not a signature Gröbner basis in α. Let α0 be the minimal element
of the set. Note that any set of terms in Rm has a minimal element. Then, G is a signature Gröbner
basis up to α0. Because α0 is not selected before T ′ is selected, an S-pair whose signature is
equivalent to α0 does not appear in the algorithm. By Lemma 11, G is a signature Gröbner basis
in α0. This contradicts that G is not a signature Gröbner basis in α0. Therefore, G is a signature
Gröbner basis up to T ′. The operation on G for T ′ in Algorithm 2 is exactly same as that in
Algorithm 1. By Proposition 5, G is a signature Gröbner basis in T ′ after Step 3 of the loop
starting with α = T ′.

Our proof of termination is similar to the papers Eder-Perry [5], Roune-Stillman [3] and Eder-
Roune [6].

Proposition 13 (Termination)
simpleSB terminates in finite steps.

Proof We write R = K[x1, . . . , xk]. Set

R′ = K[x1, . . . , xk, y11, . . . , ymk, z1, . . . , zm].

For β ∈ Rm, we write (s(β),LT(β)) = (cxv1
1 xv2

2 · · · x
vk
k ei, r), where c ∈ K, v = (v1, . . . , vk) ∈ Zk

≥0 and
r is a term of R. Let f : Rm → R′ be the map defined by β 7→ ryv1

i1 · · · y
vk
ik zi. Let G(α) be the G (in

Algorithm 2) obtained when Step 3 is finished for α, where α was chosen in Step 1. Consider the
following monomial ideal I(α) = ⟨ f (β) | β ∈ G(α)⟩.
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Let α1, α2, . . . be the elements chosen in this order in Step 1 of Algorithm 2. Then we have the
sequence G(α1) ⊂ G(α2) ⊂ · · · and also I(α1) ⊂ I(α2) ⊂ · · · . Any ascending sequence of ideals in
R′ is stable since R′ is a Noetherian ring. There exists i0 such that for i > i0 we have I(αi) = I(αi0 ).

For i < j, we claim that G(αi) ( G(α j) if and only if I(αi) ( I(α j). The “if”-part is obvious.
We prove the “only if”-part in the following way. Suppose that G(αi) ( G(α j) and I(αi) = I(α j).
Let β ∈ G(α j) r G(αi). By f (β) ∈ I(α j) = I(αi), there exists β′ ∈ G(αi) such that f (β′)| f (β),
since I(αi) is the ideal generated by the monomials f (β′′) for β′′ ∈ G(αi). If f (β′) | f (β), we have
LT(β′) | LT(β) and s(β′) | s(β), by the definition of f . Hence, there exist elements β and β′ of G(α j)
with β , β′ such that LT(β′) | LT(β) and s(β′) | s(β). This contradicts that simpleSB computes a
minimal signature Gröbner basis in s(α j).

Thus we have shown that G(αi) = G(αi0 ) for i > i0. Hence G in Algorithm 2 does not grow
after αi0 , which means that Step 3 (ii) (b) does not occur after αi0 and therefore P does not grow
after αi0 . However, in Step 1, the number of elements in P decreases by one in each step. Thus,
Algorithm 2 terminates in finite steps.

Proposition 14 (Correctness)
simpleSB outputs a signature Gröbner basis when simpleSB terminates.

Proof Let T be the term in Rm chosen in Step 1, and finally computed before simpleSB terminates.
By Proposition 12, G is a signature Gröbner basis in T . Suppose G is not a signature Gröbner basis.
Consider the set of terms α ∈ Rm with T ≺ α satisfying that G is not a signature Gröbner basis
in α. Let α0 be the minimal element of the set. Then, G is a signature Gröbner basis up to α0.
However, an S-pair whose signature is equivalent to α0 does not appear in the algorithm because
the algorithm terminates at T . By Lemma 11, G is a signature Gröbner basis in α0. This contradicts
that G is not a signature Gröbner basis in α0. Therefore, G is a signature Gröbner basis.

5 Simple syzygy signature-based algorithm
In this section, one of the methods to detect zero reductions like F5 and GVW is described. By
Lemma 2, because of fie j − f jei = 0, elements in Rm whose signatures are s( fie j − f jei) are com-
pletely regularly s-reduced to 0 ∈ R. Moreover, because of r( fie j − f jei) = 0 for all r ∈ R\{0},
elements in Rm whose signatures are s(r( fie j − f jei)) are completely regularly s-reduced to 0 ∈ R.
In summary, we have :

Proposition 15
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α, β, γ ∈ Rm satisfy
s(α) ≼ T and s(βγ − γβ) | s(α). Then, α is completely regularly s-reduced to 0 ∈ R by G.

Proof Let r be a monomial in R such that s(α) = s(r(βγ − γβ)). Let α′ be the element obtained
by completely regularly s-reducing α. Note that r(βγ − γβ) is the completely regularly s-reduced

element by G because r(βγ − γβ) = 0. By Lemma 2, we have LT(α′) = LT(r(βγ − γβ)) = 0. Then,
α is completely regularly s-reduced to 0 ∈ R by G.

The next proposition gives a method to detect zero reductions, namely it gives a sufficient
condition for β ∈ R to be completely regularly s-reduced to 0 ∈ R by G, by means of the term α
which has been completely regularly s-reduced to 0 ∈ R.

Proposition 16
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α and β in Rm satisfy
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(1) α is completely regularly s-reduced to 0 ∈ R by G and

(2) s(α) | s(β).

Then, β is completely regularly s-reduced to 0 ∈ R by G.

Proof From the assumption, there exists γ ∈ Rm such that s(α − γ) = s(α) and α − γ = 0. Let
r ∈ R satisfy s(β) = rs(α). Then, s(r(α − γ)) = s(rα) = s(β) and r(α − γ) = 0. By Lemma 2, β is
completely regularly s-reduced to 0 ∈ R by G.

Algorithm 3 is simple syzygy signature-based algorithm (syzSB). syzSB is modified simpleSB
as to Propositions 15 and 16.

Algorithm 3 Simple syzygy signature-based algorithm (syzSB)

Input : a finite subset F = { f1, . . . , fm} of R.
Output: a minimal signature Gröbner basis G of F.

Step 0 G ← ∅, P← {e1, . . . , em},H ← ∅
Step 1 If P = ∅, return G

α← the minimal term in P
P← P\{α}

Step 2 If there exists γ ∈ H with γ | α, go to Step 1
Step 3 α′ ← result of completely regularly top s-reducing α by G
Step 4 (i) If α′ = 0

H ← H ∪ {α}
Go to Step 1

(ii) If α′ , 0
(a) If α′ is singularly top s-reducible by G

Go to Step 1
(b) If α′ is not singularly top s-reducible by G

P← P ∪ {s(spair(α′, β)) | β ∈ G, spair(α′, β) is regular} (#)
H ← H ∪ {s(βα′ − α′β) | β ∈ G}
G ← G ∪ {α′}
Go to Step 1

Proposition 17 (Correctness)
syzSB outputs a signature Gröbner basis.

Proof Let A be the set of the terms which simpleSB computes, and let B the set of the terms which
are completely regularly s-reduced to 0 ∈ R by G. By Propositions 15 and 16, syzSB computes the
set A \ B. Then, the output G of syzSB is the same as that of simpleSB.

Proposition 18 (Termination)
syzSB terminates in finite loops.

Proof By Propositions 15 and 16, the set P at each step 1 in syzSB is exactly same as that at the
corresponding Step 1 in simpleSB. Further, simpleSB computes finite number of the terms.
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6 Alternative rewrite basis algorithm
In this section, alternative rewrite basis algorithm (altRB) is introduced. In the paper [6], rewrite
basis algorithm (RB) is introduced as a generalized signature-based algorithm. altRB is repre-
sented easily to understand operations of the algorithm and easily to implement it. It is the most
useful signature-based algorithm for implementation in this paper. From the discussion so far, sin-
gularly top s-reducible elements which are completely regularly top s-reduced need not be included
in G. We can expect to improve the algorithm by discarding such elements without reduction. In
other words, it is enough to regularly s-reduce the elements which will be an elements of a mini-
mal signature Gröbner basis. Moreover, we can expect to improve the efficiency by replacing the
element α for the element whose signature is the same and which is not needed to reduce more
times . Among the algorithms proposed so far, the algorithm in paper [1], GVW [13], etc. have
used the method. The paper [7] introduced such algorithms as RB with RAT selected for rewrite
order. When we choose RAT for a rewrite order, rewrite basis algorithm becomes the most effi-
cient. altRB is simply introduced and as efficient as RB with RAT. Algorithm 4 is the pseudocode
of altRB.

Algorithm 4 Alternative rewrite basis algorithm (altRB)

Input : a finite subset F = { f1, . . . , fm} of R.
Output: a minimal signature Gröbner basis G of F.

Step 0 G ← ∅, P← {e1, . . . , em},H ← ∅
Step 1 If P = ∅, return G

α← the minimal term in P
P← P\{α}

Step 2 If there exists γ ∈ H with γ | α, go to Step 1
Step 3 α′ ← ω ∈ {α} ∪ {rβ | r ∈ R, β ∈ G, s(rβ) = α} such that LT(ω) is minimal
Step 4 α′′ ← result of completely regularly top s-reducing α′ by G
Step 5 (i) If α′′ = 0

Append α to H
(ii) If α′′ , 0 and (α′ is regularly top s-reduced at least one time or s(α′′) is a standard

basis)
P← P ∪ {s(spair(α′′, β)) | β ∈ G, spair(α′′, β) is regular} (#)
H ← H ∪ {s(βα′′ − α′′β) | β ∈ G} (∗)
G ← G ∪ {α′′}

Go to Step 1

Remark : In Step 4, we execute only regularly “top” s-reduction according to the description of the
algorithm. However, we can execute regularly “tail” s-reduction, and correctness and termination
of the algorithm are not affected. For (#), it is sufficient to leave only one term α in P as for the
terms α ≃ β. Although it is not efficient, if more than two terms are left, correctness and termination
of the algorithm are not affected.

Lemma 19
Let α′ and α′′ be obtained at Step 3 and at Step 4 in Algorithm 4 respectively. Let G be a signature
Gröbner basis up to s(α′′). The condition at Step 5 (ii) in Algorithm 4 is equivalent to the condition
that α′′ is not singularly top s-reducible by G.
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Proof If s(α′′) is a standard basis of Rm, say ei, there is no element in G whose signature belongs
to Rei. Thus, α′′ is not singularly top s-reducible by G. If α′ is regularly top s-reduced at least one
time at Step 4, we have LT(α′′) < LT(α′). For all b ∈ R and β ∈ G such that s(α′′) = s(bβ), we
have LT(α′′) < LT(α′) ≤ LT(bβ) by the minimality of LT(α′) at Step 3. Then, α′′ is not singularly
top s-reducible by G.

Conversely, if α′′ is not singularly top s-reducible, we consider the following two cases : (a)
s(α′′) is not a standard basis of Rm and (b) otherwise. In case (a), we claim that there exists a pair
(β, a) ∈ G × R with s(α′′) = s(aβ). Let the signature of α′′ be rei (r ∈ R \ K×). The standard
basis of Rm ei is chosen at Step 1 before rei is chosen because ei is smaller than rei. Assume that
there does not exist an element of G whose signature is ei. The element whose signature is ei is
regularly s-reduced to 0 ∈ R, then we proceed Step 5 (i). In this case, elements whose signatures
are rei do not appear in P. This means that we do not compute such an element rei. It contradicts
that the signature of α′′ is rei (r ∈ R \ K×). Then, there is an element of G whose signature is ei.
Thus, (r, ei) is a pair that we claimed. Consider the set of pairs (β, a) ∈ G × R with s(α′′) = s(aβ).
Let (β′, a′) be a pair such that LT(a′β′) is minimal in the set. Note that LT(aβ) = LT(α′) because
of the process at Step 3. By Lemma 8, we have LT(α′′) ≤ LT(aβ). If LT(α′′) = LT(aβ), α′′ is
singularly top s-reducible. This contradicts that α′′ is not singularly top s-reducible. Then, we
have LT(α′′) < LT(aβ) = LT(α′). This means that α′ is regularly top s-reduced at least one time at
Step 4. In case (b), there is nothing to prove.

Theorem 20 (Correctness)
altRB outputs a signature Gröbner basis.

Proof We prove by confirming the difference between the algorithm and the syzSB. At Step 3, by
Lemma 2, as long as the signature is the same, we can choose any elements in Rm. Thus, we can
choose the element with the smaller leading term.

At Step 5, altRB does not have branch whether α′′ is singularly top s-reducible or not. Instead
of the above, altRB check whether α′ is regularly top s-reduced at least one time at Step 4 and
check whether s(α′′) is a standard basis of Rm. By Lemma 19, they are equivalent.

Theorem 21 (Termination)
altRB terminates in finite steps.

Proof The set P at every step 1 in altRB is exactly same as that at the corresponding Step 1 in
syzSB. Further, syzSB computes finite number of the terms.

7 Module orders and zero reductions
In the paper [7], RB does not contain the line (∗) of Algorithm 4. This is because RB is introduced
as a generalized signature-based algorithm. If we implement as so, we have to be careful for the
number of zero reductions during the calculation. In case we choose POT as a module order and
compute incrementally, like Algorithm 4, the number of zero reductions becomes small. Espe-
cially, if the polynomial systems are regular sequences, the number of zero reductions is zero. In
case we choose a module order other than POT or a module order not to be suitable for incremental
computation, the number of zero reductions increases during calculation.

It can be proved that the update of H is sufficient to be done first as in Algorithm 5 in case
POT is chosen as the module order and it is calculated incrementally,
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Algorithm 5 Alternative rewrite basis algorithm (incremental)

Input : a Gröbner basis F = { f1, . . . , fm−1} ⊂ R, a polynomial fm ∈ R.
Output: a minimal signature Gröbner basis G of F ∪ { fm}.
Step 0 G ← { f1, . . . , fm−1}, P← {em},H ← {s(eiem − emei) | 1 ≤ i ≤ m − 1}
Step 1 If P = ∅, return G

α← the minimal term in P
P← P\{α}

Step 2 If there exists γ ∈ H with γ | α, go to Step 1
Step 3 α′ ← ω ∈ {α} ∪ {rβ | r ∈ R, β ∈ G, s(rβ) = α} such that LT(ω) is minimal
Step 4 α′′ ←result of completely regularly top s-reducing α′ by G
Step 5 (i) If α′′ = 0

Append α to H
(ii) If α′′ , 0 and (α′ is regularly top s-reduced at least one time or s(α′′) is a standard

basis)
P← P ∪ {s(spair(α′′, β)) | β ∈ G, spair(α′′, β) is regular} (#)
G ← G ∪ {α′′}

Go to Step 1

Lemma 22
Let α′′ be a new element at Step 5 (ii) in Algorithm 5 with POT such that e1 ≺ e2 ≺ · · · ≺ em. For
all β ∈ G, there exists γ ∈ H such that γ | s(α′′β − βα′′).

Proof First, we prove H = {rem | r ∈ HT(F)}. We have s(eiem − emei) = s(eiem) because the
module order is POT. Then, we have s(eiem) = s( fiem) = s(HT( fi)em) = HT( fi)em.

Let α′′ and β ∈ G be written as α′′ =
∑m

i=1 riei and β =
∑m

j=1 r′je j, for ri, r′i ∈ R. Then, we have
α′′ =

∑m
i=1 ri fi ≡ hm fm (mod F).

α′′β − βα′′ =
 m∑

i=1

ri fi

 ·
 m∑

j=1

r′je j

 −
 m∑

j=1

r′j f j

 ·
 m∑

i=1

riei


=


 m∑

i=1

ri fi

 · r′m −
 m∑

j=1

r′j f j

 · rm

 em + · · ·

We focus on polynomial part of em. m∑
i=1

ri fi

 · r′m −
 m∑

j=1

r′j f j

 · rm ≡ rm fmr′m − r′m fmrm (mod F)

≡ 0 (mod F)

Therefore, there exists an element in H which divides s(α′′β − βα′′).

8 Conclusion
We have presented some signature-based (semi-)algorithms for computing Gröbner bases: fundSB,
simpleSB, syzSB and altRB. Among them, altRB is a practical signature-based algorithm and can
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be implemented easily in any computer algebra system, as altRB is described concretely. The other
(semi-)algorithms are used auxiliarily to prove the correctness and the termination of altRB. The
characteristics of the (semi-)algorithms are as follows:

1. fundSB is a prototype of signature-based algorithms, and helps us grasp the idea and how
signature-based algorithms work. However, it does not terminate.

2. simpleSB is obtained by modifying fundSB with the concept of S-pairs so that it terminates.
It outputs a signature Gröbner basis with a finite number of operations.

3. syzSB is obtained by including a step detecting zero reductions into simpleSB. The step is
assured by Propositions 15 and 16.

4. altRB is obtained by inserting in syzSB a step replacing the term by an element which has a
smaller leading term. This enables us to reduce the number of regular s-reductions significantly.

By discussing the correctness and the termination of these (semi-)algorithms step by step, we
have finally obtained the correctness and the termination of altRB. The proofs are self-contained
and very clear. altRB is efficient for an arbitrary module order. In the last section, we have
discussed how signature-based algorithms work when POT is chosen as a module order and when
it proceeds incrementally.

As a future work, it would be meaningful to study the relation between input systems and
module orders we choose, toward finding an efficient module order for a given input system.
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