
COMMUNICATIONS OF
JAPAN SOCIETY FOR SYMBOLIC AND

ALGEBRAIC COMPUTATION

2020
VOL.4

JSSAC
ISBN978-4-903027-36-4

Aims and Scopes:

Communications of JSSAC (Japan Society of Symbolic and Algebraic Computations) is dedicated

to researchers who have a special interest in symbolic and algebraic computation. Communica-

tions of JSSAC publishes original articles dealing with every aspect of symbolic and algebraic

computation.

Research Areas Include but are not limited to:

・Theoretical and algorithmic issues of symbolic and algebraic computation

・Design and implementation of symbolic and algebraic computation systems

・Applications of symbolic and algebraic computation in education, science, engineering and in-

dustry, pure mathematics, etc.

Legal Requirements:

In order to submit a manuscript, at least one of the author(s) should be a member of JSSAC in

principle

Manuscript Submission:

A manuscript must be written in English.

It also should be written in Latex.

A submission must include:

(1) a Latex source file

(2) a dvi, ps or pdf file of (1)

(3) a title of the paper as well as the name(s) and affiliation(s) and mailing address(es) of the

author(s)

(4) an abstract (no more than 150 words) and key words (5 or less)

For full and complete guide for authors, please refer to the following sites.

http://www.jssac.org/Editor/Style/index.html (in Japanese)

http://www.jssac.org/Editor/Communications/index-e.html (in English)

Every submitted manuscript will undergo a standard review process and the acceptance for pub-

lication by the editorial board will be based on its originality, significance of contribution and its

relevance to the scope of Communications of JSSAC.

Miscellaneous:

・The copyright of a published paper is transferred to JSSAC.

・Communications of JSSAC has no page charges.

Contents

Computation of a Primary Component of an Ideal from Its Associated Prime

by Effective Localization
Yuki Ishihara, Kazuhiro Yokoyama . 1

Simple Signature-Based Algorithms with Correctness and Termination

Kosuke Sakata . 33

c© 2020 Japan Society for Symbolic and Algebraic Computation

Communications of JSSAC (2020)
Vol. 4, pp. 1 – 31

Computation of a Primary Component of an Ideal from

Its Associated Prime by Effective Localization

Yuki Ishihara∗

Graduate School of Science, Rikkyo University

Kazuhiro Yokoyama†

Department of Mathematics, Rikkyo University

(Received 23/May/2020 Accepted 26/Sep/2020)

Abstract

This is an enhanced full paper version of [Ishihara-Yokoyama, 2018] and contains detailed

proofs, additional examples and new algorithms. In [Ishihara-Yokoyama, 2018], we proposed

effective methods for localization of a polynomial ideal, which are called "Local Primary Al-

gorithm (LPA)". Here, we consider the special case "localization by a prime ideal" and we

introduce criteria for prime divisors and effective methods for computation of a primary com-

ponent. For an ideal I and a prime ideal P, LPA computes a P-primary component of I after

checking whether P is a prime divisor of I. It mainly uses Double Ideal Quotient (DIQ)

(I : (I : P)) and its variants which contain useful information about localization of I. To ex-

amine its practicality, we compare it to another localization algorithm without DIQ. Based on

computational experiments, we give further discussions about the practicality.

Keywords: Gröbner Basis, Primary Decomposition, Localization, Double Ideal Quotient

1 Introduction
The operation of "localization by a prime ideal" is widely known as a basic tool in commutative

algebra and algebraic geometry. Here, we focus on computing a primary component from only

its prime divisor and propose a new effective localization. As key notions, it uses double ideal
quotient (DIQ) (and its variants) and maximal independent set (MIS).

We recall briefly the essence of [5]. Localization of ideals (as the saturation or the contraction

of localized ideals) can be computed through its primary decomposition (see Remark 4), where

algorithms of primary decomposition have been much studied in papers [2, 3, 7, 12]. However, in

practice, the use of primary decomposition is not an efficient way since it tends to be very time-

consuming. Hence, we focused on special localization (localization by a prime ideal) and compute

a primary component directly, without its full primary decomposition. Then, we invented a direct

method named Local Primary Algorithm (LPA) which computes a primary component, without its

full primary decomposition. In more details, we explain some key points of LPA as follows.

∗yishihara@rikkyo.ac.jp
†kazuhiro@rikkyo.ac.jp

c⃝ 2020 Japan Society for Symbolic and Algebraic Computation

2 Communications of JSSAC Vol. 4

• LPA is based on several generating tools and criteria for primary components with different

procedures for two cases; isolated and embedded.

• LPA uses double ideal quotient and its variants as tools for generating and checking primary

components.

• Double ideal quotient (DIQ) is (I : (I : J)) for ideals I and J, which already appears in

[14] to check associated primes or compute equidimensional hulls, and in [2], to compute

equidimensional radicals.

• There are other important properties of DIQ and its variants toward effective localization. For

instance, for ideals I, J and a primary decomposition Q of I, a variant of DIQ (I : (I : J)∞)

coincides with
∩

Q∈Q,J⊂IK[X]√Q∩K[X] Q.

For practical implements we devised several efficient techniques for improving our LPA as follows

(see [6, 14] for efficient computation of ideal quotient and saturation).

• (P[m]
G -products) Use P[m]

G = (f m
1
, . . . , f m

r) for some generator G = { f1, . . . , fr} of P and the

equidimensional hull (see Definition 10) hull(I + P[m]
G) to compute a P-primary component,

instead of using hull(I + Pm) (see Lemma 54).

• (MIS-hull) Use a maximal independent set of P for computing hull(Q) where Q is a P-hull-

primary ideal (see Definition 13). Since a maximal independent set U of P is also a maximal

independent set of I +Pm, we obtain hull(I +Pm) = (I +Pm)K[X]K[U]× ∩K[X] (see Lemma 58).

• (MIS-localization) Use a maximal independent set U of P at the first step of LPA to replace I
for IK[X]K[U]× ∩ K[X] (see Theorem 39).

As an enhanced full paper version of [5], this paper contains detailed proofs, additional exam-

ples and new algorithms. In particular, as additional development, we invent another localization

algorithm using a well-known splitting tool of ideal instead of DIQ to compare it and the original

LPAs (see Sect. 6). Furthermore, we make a new implementation on the computer algebra system

Risa/Asir [11] and re-examine the performance in a number of examples in Sect. 7. As a reference,

we show the timings of a full primary decomposition function noro_pd.syci_dec in Risa/Asir.

Thanks to efficient techniques above, our experiment shows clearly the practicality of our direct

localization method. From our experiments, we conclude that MIS-localization is the most effi-

cient tool among our LPAs. However, there are some cases for which it is not efficient. Our main

observation is the following;

• LPAs have strong effectiveness by its speciality.

• MIS-localization is much effective for many examples (see Table 1 and Table 2 in Sect. 7).

However, its computational behavior is unstable (see Figures 2, 3 in Sect. 7).

• Effectiveness of the algorithms depends on ideals. At present, it is not predicable and thus it

would be better to apply them in parallel.

This paper is organized as follows. Through Sect. 2 to Sect. 7, we add complete proofs and

a lot of examples as an enhanced full paper version of [5]. In Sect. 2, we provide a mathematical

basis for our criteria and algorithms. In Sect. 3, we introduce notions and properties of DIQ and

its variants. In Sect. 4, we describe criteria for prime divisors and primary components by using

DIQ and its variants. In Sect. 5, we explain LPA to compute the particular primary component

Communications of JSSAC Vol. 4 3

without primary decomposition, after isolated and embedded prime divisor checks. In Sect. 6,

the additional section, we generalize propositions in [5] and devise a new algorithm using splitting

tool and maximal independent set instead of DIQ. In Sect. 7, we tested for many examples as

experiments and discuss the behavior of each algorithm. In Sect. 8, we give some concluding

remarks and the future works.

2 Mathematical Basis
Throughout this paper, we let K be a computable field (e.g. the rational field Q or a finite field),

X = {x1, . . . , xn} a set of variables and K[X] = K[x1, . . . , xn] the polynomial ring. We write

(f1, . . . , ft)K[X] for the ideal generated by elements f1, . . . , ft in K[X] and we simply use (f1, . . . , ft)
if the ring is obvious. When we simply say I is an ideal, it means the I is an ideal of K[X].

Moreover, we denote the radical of I by
√

I.

2.1 Definition of Primary Decomposition and Localization
Here we give the definition of primary decomposition, which can be found in several books [1, 3,

6, 14].

Definition 1 (Primary Decomposition)
For an ideal I of K[X], a set Q of primary ideals is called a primary decomposition of I if I =∩

Q∈Q Q. A primary decomposition Q = {Q1, . . . ,Qr} is irredundant if the
√

Qi are all distinct and

Qi 2
∩

j,i Q j. We assume primary decomposition is irredundant. For a primary decomposition

of I, each primary ideal is called a primary component of I. The prime ideal associated with a

primary component of I is called a prime divisor of I. Among all prime divisors of I, minimal

prime ideals are called isolated prime divisors of I and others are called embedded prime divisors

of I. A primary component of I is called isolated if its prime divisor is isolated and embedded if its

prime divisor is embedded. We denote by Ass(I) and Assiso(I) the set of all prime divisors of I and

the set of all isolated prime divisors respectively.

It is well-known that an isolated primary component does not depend on primary decomposi-

tions, while an embedded primary component does. From the perspective of algorithm, it tends to

be more difficult to compute embedded primary components than isolated primary components.

We also give fundamental notions and properties related to a localization that can extract the

particular primary components.

Definition 2 (Localization)
Let I be an ideal of K[X] and S a multiplicatively closed set in K[X]. We call IK[X]S the localized

ideal by S and IK[X]S ∩ K[X] the contraction of the localized ideal respectively. For simplicity,

we call the latter the localization of I with respect to S (see Definition 2.2 in [12]). For a multi-

plicatively closed set K[X] \ P, where P is a prime ideal, we denote it simply by IK[X]P ∩ K[X].

We assume a multiplicatively closed set S always does not contain 0.

Example 3
In Q[X] = Q[x, y], let P = (x) be a prime ideal. For S = Q[X] \ P and I = (x2, xy), the localization

of I by S is IQ[X]S ∩Q[X] = (x). For P = (x, y) and J = (x)∩ (x+ 1)∩ (x+ 2, y2), the localization

of J by P is JQ[X]P ∩Q[X] = (x).

We remark a relationship between primary decomposition and localization.

4 Communications of JSSAC Vol. 4

Remark 4 (Localization from Primary Decomposition)
Given a primary decompositionQ of an ideal I, the localization of I by S is expressed as

∩
Q∈Q,Q∩S=∅ Q.

Moreover, it is also equal to (I : (
∩

P∈Ass(I),P∩S,∅ P)∞). Here, we are thinking mainly about com-

putable multiplicatively closed set s.t. finitely generated one or the complement of a prime ideal.

In these cases, we can decide efficiently whether Q and S intersect or not, by using Gröbner basis.

Thus if we know all primary components or all associated primes, then we can compute localiza-

tions of I for any computable multiplicatively closed sets S . However, this method is not a direct

method since it computes unnecessary primary components or associated primes.

Next we introduce the notion of pseudo-primary ideal, which is an extension of the definition

of primary ideal.

Definition 5 ([12], Definition 2.3)
Let Q be an ideal. We say Q is pseudo-primary if

√
Q is a prime ideal. In this case, we also say

that Q is
√

Q-pseudo-primary.

Example 6
Since

√
(x2, xy) = (x) is a prime ideal, it follows that (x2, xy) is an (x)-pseudo-primary ideal. Every

P-primary ideal is P-pseudo-primary.

With the notion of pseudo-primary ideal, we can define some special localization the minimal
P-pseudo-primary component with respect to its isolated prime divisor P. It is equal to the inter-

section of all primary components whose radicals contain P but do not contain other isolated prime

divisors.

Definition 7
Let I be an ideal and P an isolated prime divisor of I. For a set of prime divisors

P = {P′ ∈ Ass(I) | P is the unique isolated prime divisor contained in P′}

and a multiplicatively closed set S = K[X] \ ∪P′∈P P′, we call Q = IK[X]S ∩ K[X] the minimal

P-pseudo-primary component of I. This definition is consistent with one in [12]. We note that

the minimal P-pseudo-primary component is determined uniquely and has the P-isolated primary

component of I as component. Also, every P-pseudo-primary component of I defined in [12]

contains the minimal one defined here.

Example 8
For I = (x) ∩ (x + 1) ∩ (x2, y) ⊂ Q[x, y], (x2, xy) is the minimal (x)-pseudo-primary component of

I and (x + 1) is the minimal (x + 1)-pseudo-primary component of I.

Remark 9
Every minimal P-pseudo-primary component of I is a P-pseudo-primary ideal. Let QP be the

minimal P-pseudo-primary component of I. Then I =
∩

P∈Assiso(I) QP ∩I′ for some I′ s.t. Assiso(I′)∩
Assiso(I) = ∅. This decomposition is called a pseudo-primary decomposition in [12], where it is

computed by separators from given Assiso(I). Meanwhile, we introduce another method to compute

P-pseudo-primary components by using double ideal quotient in Lemma 43.

We may regard the minimal P-pseudo-primary component as a "column localization" since it

has different dimensional primary components in general. Conversely, we may consider a "row

localization", that contains equidimensional primary components.

Communications of JSSAC Vol. 4 5

Definition 10 ([2], Sect. 1)
Let I be an ideal and Q a primary decomposition of I. We call hull(I) =

∩
Q∈Q,dim(Q)=dim(I) Q

the equidimensional hull of I. Since every primary component Q satisfying dim(Q) = dim(I) is

isolated, hull(I) is determined independently from choice of primary decompositions.

Example 11
For I = (x) ∩ (x + 1) ∩ (x2, y) ∩ (x − 1, y) ⊂ Q[x, y], it follows that hull(I) = (x) ∩ (x + 1).

For a given I, hull(I) can be computed in several manners. For instance, it can be computed by

Ext functors [2] or a regular sequence contained in I [14] as follows.

Proposition 12 ([2], Theorem 1.1. [14], Proposition 3.41)
Let I be an ideal and u ⊂ I be a c-length regular sequence, where c is the codimension of I. Then

hull(I) = ((u) : ((u) : I)) = annK[X](ExtcK[X](K[X]/I,K[X])).

Next, we introduce the notion of hull-primary ideal, which is an extension of the definition of

pseudo-primary ideal. We use hull-primary ideal in Sec. 5.2.1 to devise practical techniques for

LPA.

Definition 13 ([5], Definition 13)
Let I be an ideal. We say that I is hull-primary if hull(I) is a primary ideal. For a prime ideal P, we

say a hull-primary ideal I is P-hull-primary if P = hull(
√

I).

Example 14
Let I = (x2) ∩ (x3, y) ∩ (x + 1, y + 1) ⊂ Q[x, y]. Since hull(I) = (x2) is (x)-primary, I is (x)-hull

primary.

As a pseudo-primary ideal has the unique isolated component, we obtain the following remark.

Remark 15
Every pseudo-primary ideal is hull-primary.

Using the following lemma and a variant of double ideal quotient, we can compute the isolated

P-primary component of I in Section 5.

Lemma 16 ([5], Lemma 15)
Let P be an isolated prime divisor of I and QP the minimal P-pseudo-primary component of I.

Then, QP is a P-hull-primary and hull(QP) is the isolated P-primary component of I.

Proof By Remarks 9 and 15, it follows that QP is P-hull-primary and hull(QP) is the isolated P-

primary component. By the definition of QP and Lemma 72, we obtain that hull(QP) is the isolated

P-primary component of I.

Example 17
Let I = (x) ∩ (x2, y) ∩ (x2, y + 1) ⊂ Q[x, y]. For P = (x), QP = (x2, xy) is the minimal P-pseudo

primary component of I and hull(QP) = (x) is the P-isolated primary component of I.

6 Communications of JSSAC Vol. 4

2.2 Fundamental Properties of Ideal Quotient
We introduce fundamental properties of ideal quotient. The first two can be seen in several papers

and books ([1], Lemma 4.4. [6], Lemma 4.1.3. [14], a remark before Proposition 3.56). The last

two are direct consequences of the first two. We put a proof of Lemma 18 into Appendix.

Lemma 18 ([5], Lemma 19)
Let I and J be ideals, Q a primary ideal and Q a primary decomposition of I. Then,

(Q : J) =

Q (J 1

√
Q),

K[X] (J ⊂ Q),√
Q-primary ideal properly containing Q (J 1 Q, J ⊂

√
Q),

(1)

(Q : J∞) =

{
Q (J 1

√
Q),

K[X] (J ⊂
√

Q),
(2)

(I : J) =
∩

Q∈Q,J1
√

Q

Q ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J), (3)

(I : J∞) = (I :
√

J∞) =
∩

Q∈Q,J1
√

Q

Q. (4)

3 Double Ideal Quotient
Double Ideal Quotient (DIQ) is an ideal of shape (I : (I : J)) where I and J are ideals. For an ideal

I and its primary decomposition Q, we divide Q into three parts:

Q1(J) = {Q ∈ Q | J 1
√

Q},
Q2(J) = {Q ∈ Q | J ⊂ Q},
Q3(J) = {Q ∈ Q | J 1 Q, J ⊂

√
Q}.

For example, letting I = (x2) ∩ (x3, y2) ∩ (y), J = (x2) and Q = {(x2), (x3, y2), (y)} a primary

decomposition of I, it follows that Q1(J) = {(y)}, Q2(J) = {(x2)}, and Q3(J) = {(x3, y2)}.
Then, our DIQ is expressed precisely by components of them. The following proposition can

be proved directly from Lemma 18.

Proposition 19 ([5], Proposition 20)
Let I and J be ideals. Then,

(I : (I : J)) =
∩

Q∈Q2(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J))

 (5)

∩
∩

Q∈Q3(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J))

 ,√
(I : (I : J)) =

∩
P∈Ass(I),J⊂P

P. (6)

Proof First, we show (5). We divide I into three parts:

I =
∩

Q∈Q1(J)

Q ∩
∩

Q∈Q2(J)

Q ∩
∩

Q∈Q3(J)

Q.

Communications of JSSAC Vol. 4 7

Then,

(I : (I : J)) =

[∩
Q∈Q1(J)

Q ∩
∩

Q∈Q2(J)

Q ∩
∩

Q∈Q3(J)

Q] : (I : J)

= (

∩
Q∈Q1(J)

Q : (I : J)) ∩ (
∩

Q∈Q2(J)

Q : (I : J)) ∩ (
∩

Q∈Q3(J)

Q : (I : J)).

Since

(I : J) =
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J),

we obtain

• (
∩

Q∈Q1(J)

Q : (I : J)) = (
∩

Q∈Q1(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

= K[X]

• (
∩

Q∈Q2(J)

Q : (I : J)) = (
∩

Q∈Q2(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

=
∩

Q∈Q2(J)

(Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

• (
∩

Q∈Q3(J)

Q : (I : J)) = (
∩

Q∈Q3(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

=
∩

Q∈Q3(J)

(Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J))).

The second property (6) can be proved directly from the property (5).

This proposition can be used to prove the following criterion for prime divisors.

Corollary 20 ([14], Corollary 3.4)
Let I be an ideal and P a prime ideal. Then, P belongs to Ass(I) if and only if P ⊃ (I : (I : P)).

Proof We note P ⊃ (I : (I : P)) if and only if P ⊃
√

(I : (I : P)). By Proposition 19,
√

(I : (I : P)) =∩
P′∈Ass(I),P⊂P′ P′. If P ∈ Ass(I), then

√
(I : (I : P)) =

∩
P′∈Ass(I),P⊂P′ P′ ⊂ P. On the other hand, if

P ⊃
√

(I : (I : P)), then there is P′ ∈ Ass(I) s.t. P′ ⊂ P and P′ ⊃ P. Thus P = P′ ∈ Ass(I).

Example 21
Let I = (x2, xy) in Q[x, y]. Then, P = (x) is a prime divisor of I and (I : (I : P)) = (I : (x, y)) =

(x) ⊂ P.

Replacing ideal quotient with saturation in DIQ, we have the following variants.

Definition 22 (Variants of DIQ)
We call (I : (I : J)∞) the first saturated quotient, (I : (I : J∞)∞) the second saturated quotient, and

(I : (I : J∞)) the third saturated quotient respectively.

In the following proposition, we can see that variants of DIQ have useful information about

localization.

8 Communications of JSSAC Vol. 4

Proposition 23 ([5], Proposition 22)
Let Q be a primary decomposition of I. Then,

(I : (I : J)∞) =
∩

Q∈Q,J⊂IK[X]√Q∩K[X]

Q, (7)

(I : (I : J∞)∞) =
∩

Q∈Q,J⊂
√

IK[X]√Q∩K[X]

Q, (8)

(I : (I : J∞)) =
∩

Q∈Q2(J)

(Q :
∩

Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

(Q :
∩

Q′∈Q1(J)

Q′). (9)

Proof Here, we give an outline of the proof. The formula (7) can be proved by combining the

equation

(I : (I : J)∞) = (I :
√

(I : J)∞) =
∩

Q∈Q,∩Q′∈Q1(J)

√
Q′∩∩Q′∈Q3(J)

√
Q′1
√

Q

Q

by Lemma 18 and the following equivalence

(1-a) J ⊂ IK[X]√Q ∩ K[X].

(1-b)
∩

Q′∈Q1(J)

√
Q′ ∩∩

Q′∈Q3(J)

√
Q′ 1

√
Q.

for each Q ∈ Q. The second formula (8) can be proved by combining the equation (I : (I : J∞)∞) =

(I : (I : Jm)∞) =
∩

Q∈Q,Jm⊂IK[X]√Q∩K[X] Q for a sufficiently large m from the first formula (7), and

the following equivalence

(2-a) Jm ⊂ IK[X]√Q ∩ K[X] for a sufficiently large m.

(2-b) J ⊂
√

IK[X]√Q ∩ K[X].

for each Q ∈ Q. The third formula (9) can be proved directly from Lemma 18.

Now, we explain some details. We show (1-a) implies (1-b). If∩
Q′∈Q1(J)

√
Q′ ∩

∩
Q′∈Q3(J)

√
Q′ ⊂

√
Q,

then by Lemma 85,
√

Q′ ⊂
√

Q for some Q′ ∈ Q1(J) ∪ Q3(J). Since Q′ ⊂
√

Q′ ⊂
√

Q, we obtain

IK[X]√Q ∩ K[X] =
∩

Q′′∈Q,Q′′⊂
√

Q Q′′ ⊂ Q′. However, since Q′ ∈ Q1(J) ∪ Q3(J), we obtain J 1 Q′

and this contradicts J ⊂ IK[X]√Q ∩ K[X] ⊂ Q′.
Show (1-b) implies (1-a). Let Q′ ∈ Q contained

√
Q. Since

∩
Q′′∈Q1(J)

√
Q′′∩∩

Q′′∈Q3(J)

√
Q′′ 1√

Q, we obtain Q′ < Q1(J) ∪ Q3(J) and Q′ ∈ Q2(J). Hence, J ⊂ Q′ and J ⊂ ∩
Q′⊂
√

Q Q′ =
IK[X]√Q ∩ K[X].

Trivially, (2-a) implies (2-b) since J ⊂
√

Jm ⊂
√

IK[X]√Q ∩ K[X]. Show (2-b) implies (2-a).

For Q ∈ Q2(J) ∪ Q3(J), let mQ = min{m | Jm ⊂ Q} and m = max{mQ | Q ∈ Q2(J) ∪ Q3(J)}. Then,

(I : J∞) = (I : Jm). Since IK[X]√Q ∩ K[X] =
∩

Q′∈Q,Q′⊂
√

Q Q′, we obtain Q′ ∈ Q2(J) ∪ Q3(J) for

any Q′ ∈ Q contained in
√

Q. Thus, we obtain Jm ⊂ IK[X]√Q ∩ K[X].

Communications of JSSAC Vol. 4 9

Finally, we show (9). Since (I : J∞) =
∩

Q′∈Q1(J) Q′, we obtain

(I : (I : J∞)) = (I :
∩

Q′∈Q1(J)

Q′)

= (
∩

Q∈Q1(J)

Q ∩
∩

Q∈Q2(J)

Q ∩
∩

Q∈Q3(J)

Q :
∩

Q′∈Q1(J)

Q′)

=
∩

Q∈Q2(J)

(Q :
∩

Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

(Q :
∩

Q′∈Q1(J)

Q′).

Example 24
For I = (x2) ∩ (x3, y2) ∩ (x4, y3, z2) ∩ (z) and J = (x2),

(I : (I : J)∞) =
∩

Q∈Q,J⊂IK[X]√Q∩K[X]

Q = (x2),

(I : (I : J∞)∞) =
∩

Q∈Q,J⊂
√

IK[X]√Q∩K[X]

Q = (x2) ∩ (x3, y2),

(I : (I : J∞)) =
∩

Q∈Q2(J)

(Q :
∩

Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

(Q :
∩

Q′∈Q1(J)

Q′) = (x2) ∩ (x3, y2) ∩ (x4, y3, z).

Using the first saturated quotient, we devise criteria for primary components in Section 4. The

second saturated quotient can be used to an isolated prime divisors check and generate an isolated

primary component in Section 5. The third saturated quotient gives another prime divisor criterion

(Criterion 5 in Section 4) by the following proposition.

Proposition 25 ([5], Proposition 23)
Let I and J be ideals. Then √

(I : (I : J∞)) =
∩

P∈Ass(I),J⊂P

P.

In particular,
√

(I : (I : J)) =
√

(I : (I : J∞)).

Proof Let Q be a primary decomposition of I. By Proposition 23 (9),

√
(I : (I : J∞)) =

∩
Q∈Q2(J)

√
(Q :

∩
Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

√
(Q :

∩
Q′∈Q1(J)

Q′).

Since Q is minimal, we obtain Q 2
∩

Q′∈Q1(J) Q′ for any Q ∈ Q2(J) and Q 2
∩

Q′∈Q1(J) Q′ for any

Q ∈ Q3(J). Thus, by Lemma 18,√
(I : (I : J∞)) =

∩
Q∈Q2(J)

√
(Q :

∩
Q′∈Q1(J) Q′) ∩∩

Q∈Q3(J)

√
(Q :

∩
Q′∈Q1(J) Q′)

=
∩

Q∈Q2(J)

√
Q ∩∩

Q∈Q3(J)

√
Q =

∩
P∈Ass(I),J⊂P P.

From (6) in Proposition 19, we obtain
√

(I : (I : J)) =
√

(I : (I : J∞)).

Example 26
For I = (x2) ∩ (x3, y2) ∩ (y) and J = (x2),

√
(I : (I : J∞)) =

∩
P∈Ass(I),J⊂P P = (x).

10 Communications of JSSAC Vol. 4

4 Criteria for Primary Component and Prime Divisor
In this section, we present several criteria for primary component which check whether a P-primary

ideal Q is a primary component of I or not without computing primary decomposition of I, based

on the first saturated quotient. We first propose a general criterion applicable to any primary ideals.

Later, we propose some specialized criteria aiming for isolated primary components and maximal

ones. Finally, we add criteria for prime divisors.

4.1 General Primary Component Criterion
We use the first saturated quotient to check whether a given primary ideal is a component or not.

We introduce a key notion saturated quotient invariant.

Definition 27 ([5], Definition 24)
Let I and J be ideals. We say that J is saturated quotient invariant of I if (I : (I : J)∞) = J.

Example 28
Let I = (x) ∩ (x2, y) and J = (x). Then J is saturated quotient invariant of I since (I : (I : J)∞) =

(I : (x, y)∞) = (x).

Any localization of ideal is saturated quotient invariant of the ideal. Conversely, any proper

saturated quotient invariant ideal of I is some localization of I.

Lemma 29 ([5], Lemma 25)
Let I be an ideal and J a proper ideal of K[X]. Then, the following conditions are equivalent.

(A) J = IK[X]S ∩ K[X] for some multiplicatively closed set S .

(B) J is saturated quotient invariant of I.

Proof Let Q be a primary decomposition. Show (A) implies (B). From Proposition 23 (7),

(I : (I : IK[X]S ∩ K[X])∞) =
∩

Q∈Q,IK[X]S∩K[X]⊂IK[X]√Q∩K[X]

Q. (10)

By Lemma 77, IK[X]S ∩ K[X] ⊂ IK[X]√Q ∩ K[X] if and only if Q ∩ S = ∅. Thus,∩
Q∈Q,IK[X]S∩K[X]⊂IK[X]√Q∩K[X]

Q =
∩

Q∈Q,Q∩S=∅
Q, (11)

Combining (10), (11) and IK[X]S ∩ K[X] =
∩

Q∈Q,Q∩S=∅ Q by Remark 4, we obtain (I : (I :

IK[X]S ∩ K[X])∞) = IK[X]S ∩ K[X].

Next, show (B) implies (A). From Proposition 23 (7),

(I : (I : J)∞) =
∩

J⊂IK[X]√Q∩K[X]

Q = J. (12)

Let P = {
√

Q | Q ∈ Q, J ⊂ IK[X]√Q ∩ K[X]}. We may assume P , ∅, otherwise P = ∅ and

J = K[X]. Then P is an isolated set (see Definition 74) since if P′ ∈ Ass(I) and P′ ⊂ P for some

P ∈ P, then J ⊂ IK[X]P∩K[X] ⊂ IK[X]P′ ∩K[X] and P′ ∈ P. Let S = K[X]\∪P∈P P. By Lemma

75, IK[X]S ∩ K[X] =
∩

Q∈Q,
√

Q∈P Q =
∩

J⊂IK[X]√Q∩K[X] Q. By (12), we obtain IK[X]S ∩ K[X] = J.

Communications of JSSAC Vol. 4 11

Example 30
Let I = (x)∩(x2, y) and J = (x). Then J is saturated quotient invariant of I and J = IK[X](x)∩K[X].

Based on Lemma 29, we have the following criterion for primary component.

Theorem 31 (Criterion 1. [5], Theorem 26)
Let I be an ideal and P a prime divisor of I. For a P-primary ideal Q, if Q 2 (I : P∞), then the

following conditions are equivalent.

(A) Q is a P-primary component for some primary decomposition of I.

(B) (I : P∞) ∩ Q is saturated quotient invariant of I.

Proof Show (A) implies (B). Let Q be a primary decomposition. Let P = {P′ ∈ Ass(I) | P 1
P′ or P′ = P} and S = K[X] \∪P′∈P P′. Then S is a multiplicatively closed set and (I : P∞)∩ Q ⊂
IK[X]S ∩ K[X] since (I : P∞) ∩ Q =

∩
Q′∈Q,P1

√
Q′ Q′ ∩ Q. For each Q′ ∈ Q with Q′ ∩ S = ∅,

there is P′ ∈ P such that
√

Q′ ⊂ P′, i.e.
√

Q′ ∈ P. Thus, (I : P∞) ∩ Q ⊃ IK[X]S ∩ K[X] and

(I : P∞) ∩ Q = IK[X]S ∩ K[X]. By Lemma 29, IK[X]S ∩ K[X] is saturated quotient invariant of I.

Show (B) implies (A). By Lemma 29, there is a multiplicatively closed set S such that (I :

P∞) ∩ Q = IK[X]S ∩ K[X]. Let Q be a primary decomposition of I. We know IK[X]S ∩ K[X] =∩
Q′∈Q,Q′∩S=∅ Q′. By the assumption, Q 2 (I : P∞) and thus (I : P∞) ∩ Q has a P-primary

component. Then neither
∩

Q′∈Q,Q′∩S,∅ Q′ nor (I : P∞) has a P-primary component. Hence,

I = (I : P∞) ∩ Q ∩∩
Q′∈Q,Q′∩S,∅ Q′ =

∩
Q′∈Q,P1

√
Q′ Q′ ∩ Q ∩∩

Q′∈Q,Q′∩S,∅ Q′

is a primary decomposition and Q is its P-primary component.

Example 32
Let I = (x) ∩ (x2, y2) ∩ (x3, y3, z) ∩ (y) ∩ (x + 1, z) and P = (x, y) in Q[x, y, z]. Then, (I : P∞) =

(x) ∩ (y) ∩ (x + 1, z). We think the following two P-primary ideals.

• Q1 = (x2, y2). Since Q1 2 (I : P∞) and (I : (I : ((I : P∞) ∩ Q1))∞) = (x) ∩ (y) ∩ (x + 1, z) ∩
(x2, y2) = (I : P∞) ∩ Q1, we obtain (x2, y2) is a P-primary component of I.

• Q2 = (x2, x + y). Since (I : (I : ((I : P∞) ∩ Q2))∞) = (x) ∩ (y) ∩ (x + 1, z) , (I : P∞) ∩ Q2, we

obtain (x2, x + y) is not a P-primary component of I.

4.2 Other Criteria for Primary Component
Next, we propose criteria for primary components having special properties which can be applied

for particular prime divisors. These criteria may be computed more easily than the general one.

4.2.1 Criterion for Isolated Primary Component:

If Q is a primary ideal whose radical is an isolated divisor P of an ideal I, then we don’t need to

compute (I : P∞) in Theorem 31 since the P-primary component of I is the localization of I by P.

Theorem 33 (Criterion 2. [5], Theorem 27)
Let I be an ideal and P an isolated prime divisor of I. For a P-primary ideal Q, the following

conditions are equivalent.

(A) Q is the isolated P-primary component of I.

(B) (I : (I : Q)∞) = Q.

12 Communications of JSSAC Vol. 4

Proof Show (A) implies (B). Let S = K[X] \ P. By Lemma 29, Q = IK[X]S ∩ K[X] is saturated

quotient invariant of I and thus (I : (I : Q)∞) = Q. Next, we show (B) implies (A). By Lemma 29,

there is a multiplicatively closed set S s.t. IK[X]S ∩K[X] = Q. Since Q is primary, IK[X]S ∩K[X]

is the isolated P-primary component.

Example 34
For I = (x2)∩(x3, y2)∩(y), a primary component Q = (x2) is isolated and (I : (I : Q)∞) = (x2) = Q.

4.2.2 Criterion for Maximal Primary Component:

Each isolated prime divisor is minimal in Ass(I). On the contrary, we consider "maximal prime

divisor" and propose the following criterion for it.

Definition 35
Let P be a prime divisor of I. We say P is maximal if there is no prime divisor P′ of I containing

P properly.

Example 36
For I = (x) ∩ (x2, y2) ∩ (z2) in Q[x, y, z], prime divisors P1 = (x, y) and P2 = (z) are maximal in

Ass(I) = {(x), (x, y), (z)}.

Theorem 37 (Criterion 3. [5], Theorem 29)
Let I be an ideal and P a maximal prime divisor of I. For P-primary ideal Q, the following

conditions are equivalent.

(A) Q is a P-primary component of I.

(B) (I : P∞) ∩ Q = I.

Proof Show (A) implies (B). Let Q be a primary decomposition of I with Q ∈ Q. Since P
is maximal in Ass(I), (I : P∞) =

∩
Q′∈Q,

√
Q′2P Q′ =

∩
Q′∈Q,Q′,Q Q′. Thus, (I : P∞) ∩ Q =∩

Q′∈Q,Q′,Q Q′ ∩ Q = I. Next, we show (B) implies (A). Let Q′ be a primary decomposition of

(I : P∞). Since Q′ does not have P-primary component, Q′ ∪ {Q} is a primary decomposition of I.

Example 38
Let I = (x)∩(x2, y2)∩(z2) and P = (x, y) in Q[x, y, z]. Then P is maximal in Ass(I) and Q = (x2, y2)

is a P-primary component of I since (I : P∞) ∩ Q = (x) ∩ (z2) ∩ (x2, y2) = I.

4.2.3 Criterion for Another General Primary Component:

The general case can be reduced to maximal case via localization by maximal independent set. A

subset U of X is called a maximal independent set of I if K[U] ∩ I = 0 and the cardinality of U
is equal to the dimension of I (see [6] for its computation). Letting S = K[U]× = K[U] \ {0}, we

obtain the following as a special case of Lemma 72.

Theorem 39 (Criterion 4. [5], Theorem 30)
Let I be an ideal and P a prime divisor of I. If U is a maximal independent set of P in X and Q is

a P-primary ideal , then the following conditions are equivalent.

(A) Q is a primary component of I.

(B) Q is a primary component of IK[X]K[U]× ∩ K[X].

Communications of JSSAC Vol. 4 13

Example 40
For I = (x)∩ (x2, y)∩ (x3, y2, z), we obtain (x2, y) is a primary component of both I and IQ[X](x,y)∩
Q[X] = (x) ∩ (x2, y).

4.3 Additional Criterion for Prime Divisor
Here, we add a criterion for prime divisor based on the third saturated quotient.

Theorem 41 (Criterion 5. [5], Theorem 31)
Let I be an ideal and P a prime ideal. Then, the following conditions are equivalent.

(A) P ∈ Ass(I).

(B) P ⊃ (I : (I : P)).

(C) P ⊃ (I : (I : P∞)).

Proof By Corollary 20, (A) is equivalent to (B). By Proposition 25,√
(I : (I : P)) =

√
(I : (I : P∞)) =

∩
P′∈Ass(I),P⊂P′ P′. Thus, equivalence between (A) and (C) is

proved by the similar way of Corollary 20.

Example 42
For I = (x2) ∩ (x4, y) ∩ (x + 1) and a prime divisor P = (x), we obtain (I : (I : P)) = (x) ⊂ P and

(I : (I : P∞)) = (x2) ∩ (x4, y) ⊂ P.

Next, we devise another way to compute pseudo-primary components and criteria for isolated

prime divisors based on the second saturated quotient.

Lemma 43 ([5], Lemma 32)
Let I be an ideal and P an isolated prime divisor of I. If Q is the minimal P-pseudo-primary

component of I, then (I : (I : P∞)∞) = Q.

Proof Let Q be a primary decomposition of I. By Proposition 23 (8),

(I : (I : P∞)∞) =
∩

Q∈Q,P⊂
√

IK[X]√Q∩K[X]
Q.

Thus it is enough to show that the following statements are equivalent for each Q ∈ Q.

(1-a) P ⊂
√

IK[X]√Q ∩ K[X].

(1-b) P is the unique isolated prime divisor which is contained in
√

Q.

Show (1-a) implies (1-b). As
√

IK[X]√Q ∩ K[X] ⊂
√

Q, we know P ⊂
√

Q. Then, suppose there

is another isolated prime divisor P′ contained in
√

Q. We obtain√
IK[X]√Q ∩ K[X] =

∩
Q′∈Q,Q′⊂

√
Q

√
Q′ ⊂ P′.

However, this implies P ⊂ P′ and contradicts that P′ is isolated. It is easy to prove that (1-b)

implies (1-a). Since P is the unique isolated prime divisor which is contained in
√

Q, we obtain

that √
IK[X]√Q ∩ K[X] =

∩
Q′∈Q,Q′⊂

√
Q

√
Q′ = P.

14 Communications of JSSAC Vol. 4

Example 44
For I = (x)∩ (x2, y2)∩ (y+ 1) and P = (x), we obtain (I : (I : P∞)∞) = (x)∩ (x2, y2) is the minimal

P-pseudo-primary component of I.

Using Lemma 43, we obtain the following criterion for isolated prime divisor.

Theorem 45 (Criterion 6. [5], Theorem 33)
Let I be an ideal and P a prime ideal containing I. Then, the following conditions are equivalent.

(A) P is an isolated prime divisor of I.

(B) (I : (I : P∞)∞) , K[X].

Proof Show (A) implies (B). By Lemma 43, (I : (I : P∞)∞) = Q , K[X]. Show (B) implies (A).

By Proposition 23 (8),

(I : (I : P∞)∞) =
∩

Q∈Q,P⊂
√

IK[X]√Q∩K[X]
Q , K[X]

for a primary decomposition Q of I. Then, there is an isolated prime divisor P′ containing P. Since√
I ⊂ P ⊂ P′ and P′ is isolated, this implies P = P′ is isolated.

Since each prime divisor of I contains I, Theorem 45 directly induces the following.

Corollary 46 (Criterion 7. [5], Corollary 34)
Let I be an ideal and P a prime divisor of I. Then,

(i) P is isolated if (I : (I : P∞)∞) , K[X],

(ii) P is embedded if (I : (I : P∞)∞) = K[X].

Example 47
Let I = (x)∩ (x2, y2)∩ (y+ 1). For a prime divisor P1 = (x), (I : (I : P∞)∞) = (x)∩ (x2, y2) , Q[X]

and P1 is isolated. For a prime divisor P2 = (x, y), (I : (I : P∞)∞) = Q[X] and P2 is embedded.

5 Local Primary Algorithm
In this section, we devise Local Primary Algorithm (LPA) which computes P-primary component

of I. Our method applies different procedures for two cases; isolated and embedded. Algorithm

1 shows the outline of LPA. Its termination comes from Proposition 48. We remark that, for

given prime divisors disjoint from a multiplicatively closed set S , we can compute all primary

components disjoint from S by LPA. Then their intersection gives the localization by S .

5.1 Generating Primary Component
First, we introduce several ways to generate primary components through equidimensional hull

computation.

Proposition 48 ([2], Section 4. [10], Remark 10)
Let I be an ideal and P a prime divisor of I. For any positive integer m, I + Pm is P-hull-primary,

and for a sufficiently large integer m, hull(I+Pm) is a P-primary component appearing in a primary

decomposition of I.

Example 49
For I = (x) ∩ (x2, y) ∩ (x3, y2, z) and P = (x, y), we obtain I + P3 = (x3, x2y, xy2, y3, x2z, xyz) and

hull(I + P3) = (x2, xy, y3) is a P-primary component of I.

Communications of JSSAC Vol. 4 15

We can use Criteria for Primary Component to check m is large enough or not. If P is an isolated

prime divisor, then the component is computed directly by using the second saturated quotient. By

Lemma 16 and Lemma 43, we obtain the following theorem. To compute equidimensional hull,

we can use regular sequence (see Proposition 12) or maximal independent set (see Lemma 58).

Theorem 50 ([5], Theorem 36)
Let I be an ideal and P an isolated prime divisor of I. Then

hull((I : (I : P∞)∞))

is the isolated P-primary component of I.

Example 51
For I = (x2) ∩ (x3, y2) ∩ (y + 1) and P = (x), the isolated P-primary component is hull((I : (I :

P∞)∞)) = hull((x2) ∩ (x3, y2)) = (x2).

Algorithm 1 General Frame of Local Primary Algorithm

Input: I: an ideal, P: a prime ideal

Output: • a P-primary component of I if P is a prime divisor of I
• "P is not a prime divisor" otherwise

1: if P is a prime divisor of I (Criterion 5) then
2: if P is isolated (Criteria 6,7) then
3: Q← the minimal P-pseudo-primary component of I (Lemma 43)

4: Q← hull(Q) (Theorem 50)

5: return Q is the isolated P primary component

6: else
7: m← 1, Q← K[X]

8: while Q is not primary component of I (Criteria 1,3,4) do
9: Q← a P-hull-primary ideal related to m (Proposition 48, Lemma 54)

10: Q← hull(Q)

11: m← m + 1

12: end while
13: return Q is an embedded P-primary component

14: end if
15: else
16: return "P is not a prime divisor"

17: end if

5.2 Techniques for Improving LPA
We introduce practical techniques for implementing LPA.

5.2.1 Another Way of Generating Primary Component

Let G = { f1, . . . , fr} be a generator of a prime ideal P. Usually we take { f e1

1
f e2

2
· · · f er

r | e1+· · ·+er =

m} as a generator of Pm for a positive integer m. However, this generator has (r+m−1)!
(r−1)!m!

elements and

it becomes difficult to compute hull(I + Pm) when m becomes large. To avoid the explosion of the

number of the generator, we can use P[m]
G = (f m

1
, . . . , f m

r) instead.

16 Communications of JSSAC Vol. 4

First, we introduce a proposition to compute primary decomposition by using equdimensional

hull.

Lemma 52 ([5], Lemma 37)
Let Q be a primary decomposition of I and Q ∈ Q. If

√
Q-hull-primary ideal Q′ satisfies I ⊂ Q′ ⊂

Q, then (Q \ {Q}) ∪ {hull(Q′)} is another primary decomposition of I.

Proof By Lemma 81, we obtain I ⊂ Q′ ⊂ hull(Q′) ⊂ Q. Since I∩hull(Q′) = I and Q∩hull(Q′) =
hull(Q′), we obtain

I = I ∩ hull(Q′) =

 ∩
Q′′∈Q,Q′′,Q

Q′′ ∩ Q

 ∩ hull(Q′) =
∩

Q′′∈Q,Q′′,Q

Q′′ ∩ hull(Q′).

Thus, (Q \ {Q}) ∪ {hull(Q′)} is an irredundant primary decomposition of I.

Example 53
Let I = (x) ∩ (x2, y) ∩ (z), Q′ = (x2, xy, y2) ∩ (x2, xy, y3, z + 1) and P = (x, y). Then, Q′ is P-hull-

primary. For a primary component Q = (x2, y), we obtain I ⊂ Q′ ⊂ Q and hull(Q′) = (x2, xy, y2) is

a P-primary component of I.

Next, the following lemma gives another efficient way to compute a primary component from

its prime divisor.

Lemma 54 ([5], Lemma 38)
For any positive integer m, I + P[m]

G is P-hull-primary, and for a sufficiently large m, hull(I + P[m]
G)

is a P-primary component appearing in a primary decomposition of I if P is a prime divisor of I.

Proof As

√
P[m]

G = P and
√

I + P =
√

I + P[m]
G = P, I + P[m]

G is P-hull-primary. By Proposition

48, hull(I + Pm) is a P-primary component of I for a sufficiently large m. Since I ⊂ I + P[m]
G ⊂

I + Pm ⊂ hull(I + Pm), hull(I + P[m]
G) is a P-primary component by Lemma 52.

Example 55
For I = (x)∩ (x2, y)∩ (x3, y2, z) and P = (G) = (x, y), we obtain I + P[3]

G = (x3, xy2, y3, x2z, xyz) and

hull(I + P[3]
G) = (x2, xy, y3) is a P-primary component of I.

5.2.2 Regular Sequence Computation for Pseudo-Primary Ideal

We can compute a regular sequence in a P-pseudo-primary ideal I from one of P by the following

lemma. Since a generator of P may be more easily than one of I, it tends to be less time-consuming.

Lemma 56
Let I be a P-pseudo-primary ideal and u = { f1, . . . , fc} a regular sequence in P. Then, for efficiently

large integers m1, . . . ,mc, { f m1

1
, . . . , f mc

c } is a regular sequence in I.

Proof By Theorem 26 in [9], { f m1

1
, . . . , f mc

c } is a regular sequence for any positive integers m1, . . . ,mc.

Since I is P-pseudo-primary, it follows that
√

I = P. Thus, for efficiently large integer m1, . . . ,mc,

{ f m1

1
, . . . , f mc

c } ⊂ I and it is a regular sequence in I.

Since
√

(I : (I : P∞)∞) = P if P is isolated, we obtain the following Corollary. From codim(P) =

codim((I : (I : P∞)∞)) and Lemma 12, we can compute the equidimensional hull hull((I : (I :

P∞)∞)) by using a regular sequence in P.

Communications of JSSAC Vol. 4 17

Corollary 57
Let I be an ideal and P its isolated prime divisor. Let u = { f1, . . . , fc} be a regular sequence in P.

Then, for efficiently large integer m, { f m
1
, . . . , f m

c } is a regular sequence in (I : (I : P∞)∞).

5.2.3 Equidimensional Hull Computation with MIS

Next, we devise another computation of hull(I + Pm) based on maximal independent set (MIS)

which tends to be much efficient than computations based on Proposition 12. Similarly, by this

technique we can replace I with IK[X]K[U]× ∩ K[X] at the first step of LPA.

Lemma 58 ([5], Lemma 39)
Let I be a P-hull-primary ideal. For a maximal independent set U of P, hull(I) = IK[X]K[U]×∩K[X].

Proof Let Q be a primary decomposition of I. Then, hull(I) is the unique primary component

disjoint from K[U]×. Thus, IK[X]K[U]× ∩ K[X] =
∩

Q∈Q,Q∩K[U]×=∅ Q = hull(I).

Example 59
For I = (x) ∩ (x2, y) and P = (x) in Q[X] = Q[x, y], we obtain U = {y} is a maximal independent

set of P. Then, hull(I) = (x) = IQ[X]Q[U]× ∩Q[X].

6 Further Discussion of Local Primary Algorithm

In this section, we devise another algorithm "LPA-(P[m]
G +MIS) without DIQ" to compute the partic-

ular primary component, without double ideal quotient and its variants. The algorithm uses equidi-

mensional hull to generate primary component in the similar way as LPA. As different points, it

uses maximal independent set for another criterion of prime divisor and generalized splitting tool

for an additional criterion of primary component.

First, we introduce a new criterion for prime divisors using maximal independent set instead of

double ideal quotient.

Proposition 60 (Criterion 8)
Let I be an ideal and P a prime ideal in K[X]. Then the following statements are equivalent.

1. P ∈ Ass(I).

2. (I′ : P∞) , I′, where I′ = IK[X]K[U]× ∩ K[X] for a maximal independent set U of P.

Proof Let Q be a primary decomposition of I. To prove that (1) implies (2), we remark that P ∈
Ass(I) leads P ∈ Ass(I′) from Lemma 72 and P ∩ K[U]× = ∅. Thus, we obtain that (I′ : P∞) , I′

since P < Ass((I′ : P∞)). Next, we show (2) implies (1). Since (I′ : P∞) , I′, there is a prime

divisor P′ ∈ Ass(I′) containing P. Then P′ ∩ K[U]× = ∅ and dim(P′) ≤ dim(P) = #U. From

Lemma 72, P′ ∈ Ass(I) and thus dim(P′) ≥ #U. Hence, dim(P) = dim(P′) and P = P′ ∈ Ass(I).

Example 61
Let I = (x2)∩ (x3, y) and P = (x) in Q[X] = Q[x, y]. Then, U = {y} is the maximal independent set

of P and I′ = IQ[X]Q[U]× ∩Q[X] = (x2). Since (I′ : P∞) = Q[X] , I′, we get P ∈ Ass(I).

Next, we introduce a P-pseudo-descending chain to devise a generalized splitting tool and a

new criterion for isolated prime divisors. It is a generalization of Pm and P[m]
G in [5].

18 Communications of JSSAC Vol. 4

Definition 62 (P-pseudo-descending chain)
Let P be a prime ideal and J1 ⊃ J2 ⊃ J3 ⊃ · · · a descending chain of P-pseudo-primary ideals.

We say that J1 ⊃ J2 ⊃ J3 ⊃ · · · is a P-pseudo-descending chain if PJm ⊃ Jm+1 for every positive

integer m.

Example 63
As an easy example, P ⊃ P2 ⊃ P3 ⊃ · · · is a P-pseudo-descending chain. For a generator G of

P, P[1]
G ⊃ P[2]

G ⊃ P[3]
G ⊃ · · · is a P-pseudo-descending chain since P[m]

G is P-pseudo-primary and

PP[m]
G ⊃ P[m+1]

G for every m.

Remark 64
We remark that a P-pseudo-descending chain is not always P-filtration i.e. it does not always

satisfy the other inclusion PJm ⊂ Jm+1.

We can use a P-pseudo-descending chain to generate P-primary component as Lemma 65, a

generalization of Proposition 48 and Lemma 54.

Lemma 65
Let I be an ideal, P a prime divisor of I and J1 ⊃ J2 ⊃ J3 ⊃ · · · be a P-pseudo-descending chain.

Then, for an efficiently large integer m, hull(I + Jm) is a P-primary component of I. Moreover, if

hull(I + Jm) is a P-primary component of I for some m, then hull(I + Jm+1) is also a P-primary

component of I.

Proof Let Q be a P-primary component of I. Since K[X] is Noetherian, there is an efficiently

large integer m s.t. Pm ⊂ Q. As Pm ⊃ Pm−1J1 ⊃ Pm−2J2 ⊃ · · · ⊃ PJm−1 ⊃ Jm, it follows that

I ⊂ I+ Jm ⊂ Q. Here,
√

I + Jm =

√√
I + P = P and thus I+ Jm is P-pseudo-primary, in particular,

P-hull-primary. From Lemma 52, we obtain hull(I + Jm) is a P-primary component of I. Next,

we show the second statement. If hull(I + Jm) is a P-primary component of I for some m, then it

follows that I ⊂ I + Jm+1 ⊂ I + Jm ⊂ hull(I + Jm). Thus, hull(I + Jm+1) is a P-primary component

of I from Lemma 52.

Example 66
Let I = (x2, xy), P = (x, y) and Jm = (xm, ym). We obtain hull(I + Jm) = (x2, xy, ym) is a P-primary

component if m ≥ 2.

Here, we devise a generalized splitting tool and find an integer m s.t. hull(I+ Jm) is a P-primary

component as follows.

Proposition 67 (Generalized Splitting Tool)
Let I be an ideal, P a prime divisor of I and J1 ⊃ J2 ⊃ J3 ⊃ · · · be a P-pseudo-descending chain.

Then, for an efficiently large integer m,

I = (I : P∞) ∩ (I + Jm).

In particular, for such m, hull(I + Jm) is a P-primary component of I.

Proof By Lemma 83, I = (I : P∞) ∩ (I + Pm) for an efficiently large integer m. As Jm ⊂ Pm, it

follows that

I = (I : P∞) ∩ (I + Pm) ⊃ (I : P∞) ∩ (I + Jm) ⊃ I

and thus I = (I : P∞) ∩ (I + Jm). Since (I : P∞) does not have P-primary component and I + Jm is

P-hull-primary, we obtain hull(I + Jm) is a P-primary component of I.

Communications of JSSAC Vol. 4 19

Example 68
Let I = (x2, xy), P = (x, y) and Jm = (xm, ym). We obtain I = (I : P∞) ∩ (I + J2) = (x) ∩ (x2, xy, y2)

and (x2, xy, y2) is a P-primary component of I.

A P-pseudo-descending chain gives us the following criteria for isolated prime divisors.

Theorem 69 (Criterion 9)
Let I be an ideal, P a prime divisor of I and J1 ⊃ J2 ⊃ J3 ⊃ · · · a P-pseudo-descending chain. We

suppose hull(I + Jm) is a P-primary component of I for some m. Then, the following statements

are equivalent.

1. P is an isolated prime divisor of I.

2. hull(I + Jm) = hull(I + Jm+1).

Proof First, we show (1) implies (2). By Lemma 65, hull(I+ Jm+1) is also a P-primary component

of I. Since P is isolated, the P-primary component is unique and hull(I + Jm) = hull(I + Jm+1).

Second, we show (2) implies (1). Let R = K[X]P/IK[X]P. Since I + Jm is P-hull-primary, it

follows that hull(I + Jm) = (I + Jm)K[X]P ∩ K[X] and thus hull(I + Jm)R = JmR. As hull(I + Jm) =

hull(I + Jm+1), we get JmR = Jm+1R. Thus, Jm ⊃ PJm ⊃ Jm+1 and it follows that JmR ⊃ PJmR ⊃
Jm+1R = JmR, hence, JmR = PJmR. Since JmR is finitely generated K[X]P-module, we obtain

JmR = 0 by Nakayama’s Lemma. Thus, JmK[X]P = IK[X]P and P ∈ Ass(
√

I), otherwise, IK[X]P

has two or more prime divisors. Therefore, P is isolated.

Example 70
Let I = (x2) ∩ (x3, y). For P1 = (x), it follows that hull(I + P2

1) = hull(I + P3
1
) = (x2) is a P1-

primary component. Thus, P1 is the isolated prime divisor of I. On the other hand, for P2 = (x, y)

and Jm = (xm, ym), hull(I + J3) = (x3, x2y, y3) is a P2-primary component and hull(I + J3))
hull(I + J4) = (x3, x2y, y4); thus P2 is embedded.

Remark 71
An integer m s.t. hull(I+Jm) is a P-primary component of I may be smaller than m′ s.t. hull(I+Pm′)

is a P-primary component of I. Thus, we may compute a primary component more easily by

hull(I + P[m]
G).

Algorithm 2 is another version of Local Primary Algorithm, without using DIQ. As Jm, we use

P[m]
G (currently we think this Jm is the best), for efficient computations and maximal independent

set in steps of the following algorithm.

7 Experiments and Observations
We made an implementation on the computer algebra system Risa/Asir [11] and apply it to sev-

eral examples as experiments. We revisited old examples in [5], I1(n) and Ak,m,n. The former

I1(n) = (x2) ∩ (x4, y) ∩ (x3, y3, (z + 1)n + 1) is an ideal whose embedded primary components are

hard to compute. If n is considerable large, it is difficult to compute a full primary decomposition

of I1(n) though the isolated divisor P1 = (x) can be detected pretty easily. The latter Ak,m,n defined

in [13] is more valuable for mathematics and its primary decomposition has important meanings

in Computer Algebra for Statistics. We newly considered T1, . . . ,T10 that appear in [7] for bench-

marks of primary decomposition. We describe the more details of ideals in A.2. Timings are

measured on a PC with Intel Core i7-8700B CPU with 32GB memory.

20 Communications of JSSAC Vol. 4

Algorithm 2 Local Primary Algorithm Without Double Ideal Quotient

Input: I: an ideal，P: a prime ideal in K[X]

Output: • a P-primary component if P is a prime divisor

• "P is not a prime divisor" otherwise

1: U ← a Maximal Independent Set of P, I′ ← IK[X]K[U]× ∩ K[X]

2: G ← { f1, . . . , fs} a generator of P, m← 1

3: if (I′ : P∞) = I′ then
4: return "P is not a prime divisor " (Criterion 8)

5: end if
6: while (I′ : P∞) ∩ (I′ + P[m]

G) , I′ do
7: m← m + 1 (Proposition 67)

8: end while
9: Qm ← hull(I′ + P[m]

G) = (I′ + P[m]
G)K[X]K[U]× ∩ K[X] (Lemma 58)

10: Qm+1 ← hull(I′ + P[m+1]
G) = (I′ + P[m+1]

G)K[X]K[U]× ∩ K[X]

11: if Qm = Qm+1 then
12: return "Qm is the isolated P-primary component of I " (Criterion 9)

13: else
14: return "Qm is an embedded P-primary component of I " (Criterion 9)

15: end if

Now, we explain the details of Local Primary Algorithms (LPAs). From Proposition 12, the

primitive LPA use double ideal quotient and regular sequence to compute equidimensional hull. To

compute a regular sequence in I +P[m]
G and that in (I : (I : P∞)∞) efficiently, we use Lemma 56 and

Corollary 57 respectively. As improved versions, LPA-P[m]
G is an implementation based on Lemma

54 and LPA-MIS is one from Lemma 58 and Criteria 3, 4. Both methods are implemented in LPA-

(P[m]
G +MIS). The new algorithm LPA-(P[m]

G +MIS) without DIQ is based on Algorithm 2. Here, as

a reference, we show the timings of a full primary decomposition function noro_pd.syci_dec in

Table 6.

In all Figures, the horizontal axis shows isolated or embedded prime divisors and the vertical

axis represents the timing (in seconds) of each prime divisor. In particular, the embedded prime

divisors are in order of decreasing dimension.

7.1 Computation of Isolated Components
First, we apply LPAs to isolated primary components. In Table 1 and Table 2, we can see LPAs have

clearly effectiveness by their specialities. We call an algorithm stable for an ideal if the statistical
standard deviation of timing data for their prime divisors is small. Figure 1 and Table 3 show that

LPA is stable for T1 since the the statistical standard deviation is 4.17, which is much smaller than

those of LPA-MIS and LPA-(P[m]
G +MIS). On the other hand, both LPA-MIS and LPA-(P[m]

G +MIS)

without DIQ take much time for some cases and are unstable since the statistical standard deviations

are over 100 times of that of LPA. Also, we can see its instability in Figures 2 and 3, where

we limit the maximum to 35 seconds. The main reason is that MIS-localization becomes very

time-consuming for specific ideals and prime ideals. However, when MIS-localization is efficient,

timings of LPA-MIS and LPA-(P[m]
G +MIS) without DIQ are much faster than those of LPA. There

are almost no difference between timings of LPA-MIS and LPA-(P[m]
G +MIS) without DIQ since

MIS-localization is very effective and it can reduce the timings of other parts. As a summary of

analysis for isolated examples,

Communications of JSSAC Vol. 4 21

• LPAs have clearly effectiveness by their specialities.

• LPA is stable, on the other hand, both LPA-MIS and LPA-(P[m]
G +MIS) without DIQ are unstable

due to strange behavior of MIS-localization. However, it is much useful than LPA when MIS-

localization works well.

Ideals\Algorithms LPA LPA-MIS
LPA-(P[m]

G +MIS)
w/o DIQ

I1(100), P1 0.01 0.007 0.006

I1(200), P1 0.02 0.01 0.01

I1(300), P1 0.03 0.01 0.01

I1(400), P1 0.04 0.02 0.01

I1(500), P1 0.05 0.02 0.02

A3,4,5, P2 14.1 > 7200 > 7200

T1, P3 12.3 > 7200 > 7200

T1, P4 28.2 0.20 0.19

T2, P5 50.0 > 7200 > 7200

T3, P6 0.96 0.04 0.04

T4, P7 4.11 7.74 7.84

T5, P8 5.22 0.07 0.07

T6, P9 0.13 0.02 0.01

T7, P10 25.5 0.21 0.21

T8, P11 0.06 0.02 0.02

T9, P12 2.42 1.78 1.73

T10, P13 151 2.81 2.81

Table 1: Local Primary Algorithm (Isolated)

Ideals
LPA LPA-MIS

LPA-(P[m]
G +MIS)

(# of isolated components) w/o DIQ

T1 (49) 100 73.4 75.5

T2 (15) 0 0 0

T3 (47) 97.8 82.9 82.9

T4 (40) 100 95.0 95.0

T5 (14) 100 71.4 71.4

T6 (48) 100 100 100

T7 (55) 100 89.0 90.9

T8 (37) 91.8 67.5 67.5

T9 (15) 100 26.6 40.0

T10 (76) 100 43.4 46.0

Table 2: Comparison among LPAs (the ratios of isolated primary components which each LPA

could compute more efficiently than the specified full primary decompositions.)

Fig. 1: LPA (49 isolated prime divisors of T1) Fig. 2: LPA-MIS (49 isolated prime divisors of T1)

22 Communications of JSSAC Vol. 4

Fig. 3: LPA-(P[m]
G +MIS) without DIQ (49 isolated prime divisors of T1)

Ideals \ Algorithms LPA
LPA-MIS LPA-(P[m]

G +MIS) w/o DIQ

(LPA-MIS/LPA) (LPA/(LPA-(P[m]
G +MIS) w/o DIQ))

T1 4.17 457 (109) 478 (114)

T3 173 428 (2.47) 428 (2.47)

T4 0.68 14.9(21.9) 14.8 (21.7)

T5 2.65 541(204) 541 (204)

T7 4.26 282(66.1) 281 (65.9)

T8 327 438(1.33) 439 (1.34)

T9 0.11 582 (5290) 584 (5309)

T10 16.8 557 (33.1) 562 (33.4)

Table 3: The statistical standard deviations of timing data for isolated prime divisors, where we

limit the maximum to 1200 seconds

7.2 Computation of Embedded Components
In Table 4, the primitive LPA is not practical for some examples since the cost of computing

hull(I + Pm) is much high. Comparing LPA and LPA-P[m]
G (also LPA-MIS and LPA-(P[m]

G +MIS)),

we can see the technique P[m]
G -products is effective for most cases. As algorithms using MIS-

localization, LPA-(P[m]
G +MIS) and LPA-(P[m]

G +MIS) without DIQ have good effectivenesses by

their specialities for many cases, for examples, (I1(n), P14), (A2,4,4, P15), (A2,3,7, P16), (T1, P17),

(T4, P21), (T7, P24), (T8, P25), (T10, P27) and so on. From Table 4, we can see MIS-technique is

efficient for many cases. However, there are some examples s.t. MIS-localization is not efficient,

for instance, (T1, P18) and (T3, P20). As a consideration of the ration of such non-efficient case,

in Table 5, we can see both LPA-(P[m]
G +MIS) and LPA-(P[m]

G +MIS) are effective for 96.6% of

embedded prime divisors of T1 i.e. MIS-localization is efficient for most embedded prime divisors

of T1. In Figures 4,5 and 7, we can see LPAs using MIS are unstable due to MIS-localization,

comparing LPA-P[m]
G . Same as isolated components, there are almost no difference between timings

of LPA-(P[m]
G +MIS) and LPA-(P[m]

G +MIS) without DIQ since MIS-localization is much powerful

and we can ignore the timings for computation of DIQ. In summary,

• The technique P[m]
G -products is effective for most cases.

• Both LPA-(P[m]
G +MIS) and LPA-(P[m]

G +MIS) without DIQ are much efficient to compute spe-

cific embedded components for most prime divisors.

• MIS-localization is very powerful but unstable, compared to LPA-P[m]
G .

Communications of JSSAC Vol. 4 23

Ideals \ Algorithms LPA LPA-P[m]
G LPA-MIS LPA-(P[m]

G +MIS)
LPA-(P[m]

G +MIS)
w/o DIQ

I1(100), P14 0.09 0.07 0.01 0.01 0.007

I1(200), P14 0.17 0.14 0.02 0.02 0.01

I1(300), P14 0.29 0.25 0.02 0.02 0.01

I1(400), P14 0.41 0.31 0.03 0.03 0.02

I1(500), P14 0.43 0.38 0.03 0.02 0.03

A2,4,4, P15 1707 5.50 0.56 0.25 0.32

A2,3,7, P16 143 25.1 0.60 0.37 0.41

T1, P17 73.8 71.8 0.27 0.22 0.20

T1, P18 61.6 58.2 >7200 >7200 >7200

T2, P19 214 188 >7200 >7200 >7200

T3, P20 0.75 0.76 29.6 29.5 29.5

T4, P21 10.9 9.53 0.12 0.10 0.08

T5, P22 >7200 63.0 >7200 2.82 1.13

T6, P23 >7200 5.83 >7200 0.13 0.05

T7, P24 86.3 41.5 5.89 0.21 0.19

T8, P25 3.32 0.27 0.08 0.04 0.02

T9, P26 9.54 8.18 >7200 >7200 >7200

T10, P27 4338 256 668 0.89 0.80

Table 4: Local Primary Algorithm (Embedded)

Ideals
LPA-P[m]

G LPA-(P[m]
G +MIS)

LPA-(P[m]
G +MIS)

(# of embedded components) w/o DIQ

T1 (120) 41.6 96.6 96.6

Table 5: Comparison of LPAs (the ratios of embedded primary components which each LPA could

compute more efficiently than the specified full primary decomposition of T1)

Fig. 4: LPA-(P[m]
G +MIS)

(120 embedded prime divisors of T1)

upper limit: 10 seconds

Fig. 5: LPA-(P[m]
G +MIS) w/o DIQ

(120 embedded prime divisors of T1)

upper limit: 10 seconds

Fig. 6: LPA-P[m]
G

(120 embedded prime divisors of T1)

upper limit: 200 seconds

Fig. 7: LPA-MIS

(120 embedded prime divisors of T1)

upper limit: 200 seconds

24 Communications of JSSAC Vol. 4

Ideals \ Algorithms
full primary decomposition

(noro_pd.syci_dec)
I1(100) 0.28

I1(200) 11.3

I1(300) 66.7

I1(400) 167

I1(500) 73.3

A2,4,4 3.42

A2,3,7 31.2

A3,4,5 > 7200

T1 62.7

T2 30.0

T3 63.9

T4 35.0

T5 49.8

T6 5.58

T7 261

T8 1.82

T9 5.24

T10 324

Table 6: The timings of full primary decompositions (Reference)

7.3 Summary on Computational behavior
In isolated cases, LPAs have clearly effectiveness by their specialities. In embedded cases, the

technique Pm
G-products is a useful way. For both cases, MIS-localization is very efficient for many

ideals and prime divisors, however, it is unstable. To make our LPAs more effective, we need

improvements of DIQ or MIS-localization. Since methods without MIS (LPA and LPA-P[m]
G) are

stable, improvements of DIQ gives us stable LPA-algorithms. On the other hand, if we succeed

improvements of MIS-localization for every cases, we also have efficient algorithms.

8 Conclusion and Future Work
In commutative algebra and algebraic geometry, the operation of "localization by a prime ideal"

is widely known as a basic tool. In the paper, we focus on computing a primary component from

only its prime divisor and propose a new effective localization Local Primary Algorithm (LPA).

It mainly uses double ideal quotient (DIQ) (and its variants), and localization by maximal inde-

pendent set (MIS). As an enhanced full paper version of [5], this paper contains detailed proofs,

additional examples and new algorithms. Moreover, we took benchmarks for many examples to

examine the effectiveness of LPA coming from its speciality. In the additional discussion, we in-

vent another algorithm using a well-known splitting tool and maximal independent set instead of

DIQ to compare it and the original LPAs. From experiments, we can see MIS-localization is very

effective for many cases, however, it is unstable and there are some examples which are very time-

consuming. We conclude that effectiveness of the LPAs depends on ideals and it would be better,

at the moment, to apply them in parallel.

In future work, to make our LPAs very practical we shall continue to improve it through obtain-

ing timing data for a lot of larger examples. In particular, we need to invent effective algorithms to

compute double ideal quotient and MIS-localization. To solve it, we can apply so-called modular
techniques using computations over finite fields for those over the rational field by Chinese Remain-

der Theorem and rational reconstruction. Since intermediate coefficient growth does not happen

over a finite field, it is expected to reduce time of computation over the rational field dramatically.

The first author just reported his first attempt of such modular techniques in the recent paper ([4]).

Communications of JSSAC Vol. 4 25

Another work shall be to apply our primary component criteria to probabilistic or inexact methods

for primary decomposition, such as numerical ones. Probabilistic or inexact ways may have low

computational costs but low accuracy for outputs. Hence, our criteria using double ideal quotient

can guarantee their outputs. For example, we are thinking to combine our LPAs and Numerical

Primary Decomposition in [8] to compute possible prime divisors and primary components.

Acknowledgements
The authors are grateful to Masayuki Noro for technical assistance with the computer experiments

and coding on Risa/Asir. They are also thankful to Gerhard Pfister for his helpful comments on

an earlier version of this paper. Finally, they thank the anonymous referees for their valuable

comments and suggestions to improve this paper.

References
[1] Atiyah, M.F., MacDonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Se-

ries in Mathematics. Avalon Publishing, New York (1994)

[2] Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decomposition. In-

venti. Math.110 (1), 207-235 (1992)

[3] Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polyno-

mial ideals. J. Symb. Comput.6 (2), 149-167 (1988)

[4] Ishihara Y.: Modular Techniques for Effective Localization and Double Ideal Quotient. In

Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation

(ISSAC ’20). ACM, 265-272 (2020)

[5] Ishihara Y., Yokoyama K.: Effective Localization Using Double Ideal Quotient and Its Im-

plementation. In: Gerdt V., Koepf W., Seiler W., Vorozhtsov E. (eds) Computer Algebra in

Scientific Computing. CASC 2018. Lecture Notes in Computer Science, vol 11077. Springer,

Cham, 272-287 (2018)

[6] Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Hei-

delberg (2002)

[7] Kawazoe, T., Noro, M.: Algorithms for computing a primary ideal decomposition without

producing intermediate redundant components. J. Symb. Comput.46 (10), 1158-1172 (2011)

[8] Leykin, A.: Numerical Primary Decomposition. In Proceedings of the twenty-first Interna-

tional Symposium on Symbolic and Algebraic Computation (ISSAC ’08). ACM, 165-172

(2008)

[9] Matsumura, H.: Commutative Algebra. The Benjamin/Cummings Publishing Company, Inc.

(1980)

[10] Matzat, B.H., Greuel, G.-M., Hiss, G.: Primary decomposition: algorithms and comparisons.

In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory, pp.

187-220. Springer, Heidelberg (1999)

26 Communications of JSSAC Vol. 4

[11] The Risa/Asir developing team: Risa/Asir. A computer algebra system.

http://www.math.kobe-u.ac.jp/Asir

[12] Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of polynomial ide-

als. J. Symb. Comput.22 (3), 247-277 (1996)

[13] Sturmfels, B.: Solving systems of polynomial equations. In: CBMS Regional Conference

Series. American Mathematical Society, no. 97 (2002)

[14] Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic Geometry.

Algorithms and Computation in Mathematics. Springer, Heidelberg (2004)

A Fundamental Lemmas and their Proofs (Appendix)

A.1 Lemmas and Definitions
The following lemma is an easy but fundamental criterion for primary component using localiza-

tion.

Lemma 72 ([5], Lemma 4)
Let I be an ideal and P its prime divisor. If S is a multiplicatively closed set with P ∩ S = ∅ and Q
is a P-primary ideal, then the following conditions are equivalent.

(A) Q is a primary component of I
(B) Q is a primary component of IK[X]S ∩ K[X]

Proof First, (A) implies (B) from Proposition 4.9 in [1] . For primary decompositions Q of I and

Q′ of IK[X]S ∩ K[X] with Q ∈ Q′, we obtain {Q′ ∈ Q | Q′ ∩ S , ∅} ∪ Q′ is also a primary

decomposition of I. Hence, (B) implies (A).

In particular, one or more isolated primary components of I are isolated in IK[X]S ∩ K[X] if

the localization is not trivial.

Example 73
For I = (x2, xy) ⊂ K[X] = K[x, y], we obtain that (x) is the isolated primary component of both I
and IK[X](x) ∩ K[X] = (x).

We define a special subset of Ass(I), which has a good relationship to localization. The lo-

calization by an isolated set can be expressed as intersection of primary components whose prime

divisors are in the isolated set.

Definition 74 ([1], Chapter 4)
Let I be an ideal. A subset P of Ass(I) is said to be isolated if it satisfies the following condition:

for a prime divisor P′ ∈ Ass(I), if P′ ⊂ P for some P ∈ P, then P′ ∈ P.

Lemma 75 ([1], Theorem 4.10)
Let I be an ideal and P an isolated set contained in Ass(I). For a multiplicatively closed set

S = K[X] \∪P∈P P and a primary decomposition Q of I, IK[X]S ∩ K[X] =
∩

Q∈Q,
√

Q∈P Q.

Example 76
For I = (x2(x + 1), x(x + 1)y) ⊂ K[X] = K[x, y], P = {(x), (x, y)} is an isolated subset of Ass(I) =

{(x), (x + 1), (x, y)}. Let S = K[X] \∪P∈P P. Then, IK[X]S ∩ K[X] = (x) ∩ (x2, y).

Communications of JSSAC Vol. 4 27

The following lemma tells us when primary component intersects a multiplicatively closed set.

It is used to prove Lemma 29, a criterion for localization.

Lemma 77 ([5], Lemma 7)
LetQ be a primary decomposition of I and Q ∈ Q. For a multiplicatively closed set S , the following

conditions are equivalent.

(A) IK[X]S ∩ K[X] ⊂ IK[X]√Q ∩ K[X].

(B) Q ∩ S = ∅.

Proof Show (A) implies (B). As IK[X]√Q ∩ K[X] ⊂ Q, IK[X]S ∩ K[X] =
∩

Q′∈Q,Q′∩S=∅ Q′ ⊂ Q.

Since Q is irredundant, IK[X]S ∩ K[X] has
√

Q-primary component. Thus, Q ∩ S = ∅. Now, we

show (B) implies (A). Then,
√

Q ∩ S = ∅ and Q′ ∩ S = ∅ for any Q′ ∈ Q s.t. Q′ ⊂
√

Q. Thus,

IK[X]√Q ∩ K[X] =
∩

Q′⊂
√

Q Q′ implies IK[X]S ∩ K[X] ⊂ IK[X]√Q ∩ K[X].

Example 78
For I = (x) ∩ (x + 1) ∩ (x2, y) ⊂ Q[X] = Q[x, y], let S = Q[X] \ (x, y). Then, IQ[X]S ∩ Q[X] ⊂
IQ[X]√(x) ∩Q[X] and (x) ∩ S = ∅. On the other hand, IQ[X]S ∩Q[X] 1 IQ[X]√(x+1) ∩Q[X] and

(x + 1) ∩ S , ∅.

The following lemma tells that primary ideal has a similar property to one of prime ideal.

Lemma 79 ([5], Lemma 16)
Let I and J be ideals. Let Q be a primary ideal. If IJ ⊂ Q and J 1

√
Q, then I ⊂ Q. In particular,

if I ∩ J ⊂ Q and J 1
√

Q, then I ⊂ Q.

Proof Let f ∈ I and g ∈ J \
√

Q. Since Q is
√

Q-primary, f g ∈ IJ ⊂ Q implies f ∈ Q.

Example 80
Let I = (x), J = (x + 1) and Q = (x, y2). Then, I ∩ J ⊂ (x(x + 1)) ⊂ (x, y2) = Q and J = (x + 1) 1√

Q = (x, y). Thus, I = (x) ⊂ Q = (x, y2).

Hull-primary ideal has a similar property to one of primary ideal as follows.

Lemma 81 ([5], Lemma 17)
Let I be a P-hull-primary and Q a P-primary ideal. If I ⊂ Q, then hull(I) ⊂ Q.

Proof LetQ be a primary decomposition of I and J =
∩

Q′∈Q,Q′,hull(I) Q′. Then I = hull(I)∩J ⊂ Q
and J 1 P. Since Q is P-primary, we obtain hull(I) ⊂ Q by Lemma 79.

Example 82
Let I = (x2) ∩ (x3, y) ∩ (x + 1, y + 1) and Q = (x). Then, I ⊂ Q and hull(Q) = (x2) ⊂ Q.

Next, we remark the "splitting tool", one of the most important tool for primary decomposition.

Lemma 83 ([14], Proposition 3.53)
Let I and J be ideals. Then, for a sufficiently large integer m,

I = (I : J∞) ∩ (I + Jm).

Example 84
For I = (x2, xy) and J = (x, y),

I = (I : J∞) ∩ (I + J2) = (x) ∩ (x2, xy, y2).

28 Communications of JSSAC Vol. 4

Also, we recall the famous Prime Avoidance Lemma.

Lemma 85 ([1], Proposition 1.11)
(i) Let P1, . . . , Pm be prime ideals and let I be an ideal contained in

∪m
i=1 Pi. Then, I ⊂ Pi for some

i.
(ii) Let I1, . . . , Im be ideals and let P be a prime ideal containing

∩m
i=1 Ii. Then P ⊃ Ii for some i. If

P =
∩m

i=1 Ii, then P = Ii for some i.

Finally, We add a proof of Lemma 18 in Sect. 2.2 as follows.

Lemma 18 ([5], Lemma 19)
Let I and J be ideals, Q a primary ideal and Q a primary decomposition of I. Then,

(Q : J) =

Q (J 1

√
Q),

K[X] (J ⊂ Q),√
Q-primary ideal properly containing Q (J 1 Q, J ⊂

√
Q),

(1)

(Q : J∞) =

{
Q (J 1

√
Q),

K[X] (J ⊂
√

Q),
(2)

(I : J) =
∩

Q∈Q,J1
√

Q

Q ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J), (3)

(I : J∞) = (I :
√

J∞) =
∩

Q∈Q,J1
√

Q

Q. (4)

Proof First, (1) can be proved directly from a remark before Proposition 3.56 in [14]. Second,

we show (2). We note that J 1
√

Q implies Jm 1
√

Q for any positive integer m, and thus

(Q : Jm) = Q from (1). Since K[X] is Noetherian, (Q : J∞) = (Q : Jm) for a sufficiently large m.

Thus, we obtain (Q : J∞) = Q if J 1
√

Q. If J ⊂
√

Q, then Jm ⊂ Q for a sufficiently large m and

(Q : J∞) = (Q : Jm) = K[X] from (1). Third, we prove (3). From I =
∩

Q∈Q Q and (1), we obtain

(I : J) = (
∩
Q∈Q

Q : J) =
∩
Q∈Q

(Q : J)

=
∩

Q∈Q,J1
√

Q

(Q : J) ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J) ∩
∩

Q∈Q,J⊂Q

(Q : J)

=
∩

Q∈Q,J1
√

Q

Q ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J) ∩ K[X]

=
∩

Q∈Q,J1
√

Q

Q ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J).

Finally, we show (4). From I =
∩

Q∈Q Q and (1), we obtain

(I : J∞) =
∩

Q∈Q,J1
√

Q

(Q : J∞) ∩
∩

Q∈Q,J⊂
√

Q

(Q : J∞)

=
∩

Q∈Q,J1
√

Q

Q ∩ K[X] =
∩

Q∈Q,J1
√

Q

Q.

Since J ⊂
√

Q is equivalent to
√

J ⊂
√

Q, we obtain (I : J∞) = (I :
√

J∞).

Communications of JSSAC Vol. 4 29

A.2 Ideals and Prime Ideals in Experiments

I1(n) =(x2) ∩ (x4, y) ∩ (x3, y3, (z + 1)n + 1) ⊂ Q[x, y, z].

A3,4,5 =((x12 x23 − x13 x22)x31 − x11 x32 x23 + x11 x33 x22 + (x13 x32 − x12 x33)x21,

(x13 x32 − x12 x33)x24 + (−x14 x32 + x12 x34)x23 + (x14 x33 − x13 x34)x22,

(x14 x33 − x13 x34)x25 + (−x15 x33 + x35 x13)x24 + (x15 x34 − x35 x14)x23,

(x42 x23 − x43 x22)x31 − x41 x32 x23 + x41 x33 x22 + (x43 x32 − x42 x33)x21,

(x43 x32 − x42 x33)x24 + (−x44 x32 + x42 x34)x23 + (x44 x33 − x43 x34)x22,

(x44 x33 − x43 x34)x25 + (−x45 x33 + x35 x43)x24 + (x45 x34 − x35 x44)x23)

⊂ Q[xi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 5].

A2,4,4 =(−x21 x12 + x22 x11,−x22 x13 + x23 x12,−x23 x14 + x24 x13, x32 x21 − x31 x22,

x33 x22 − x32 x23, x34 x23 − x24 x33, x42 x31 − x41 x32, x43 x32 − x42 x33,

x44 x33 − x43 x34) ⊂ Q[xi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4].

A2,3,7 =(−x21 x12 + x22 x11,−x22 x13 + x23 x12,−x23 x14 + x24 x13,−x24 x15 + x25 x14,

− x25 x16 + x26 x15,−x26 x17 + x27 x16, x32 x21 − x31 x22, x33 x22 − x32 x23,

x34 x23 − x24 x33, x35 x24 − x25 x34, x36 x25 − x26 x35, x37 x26 − x36 x27)

⊂ Q[xi j | 1 ≤ i ≤ 3, 1 ≤ j ≤ 7].

T1 =(cde f ghiz + cde f h jz + bcdei jz, 3cd f ghz3 + 4bde f gh j + 4bdeh jz2,

2b f ghi jz + f h jz3, 4bce f hz + c f gi jz, cd jz, 3eg jz4 + bcdgi j + 2cdh jz2,

3de f iz + 2de f z2 + 4bcei, 4bce f iz + 3d f h jz2, ce f h jz + bc f iz2 + giz4,

4ceghiz + bce jz) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

T2 =(3bcegz2 + 4bcghi + 2bcez2, bcez + 3dhi, c f giz3 + bcdegh, c f gz4+

3cde f gh, 2bc f giz2 + bcdegh + z6, bchz + 4bcg, 4bcdgiz + 2c f hiz2+

3bd f hi, bde f hz + bz4, 3be f giz + 2ce f gz2 + 4c f hz2, 3b f h + 4 f hi + bz2)

⊂ Q[b, c, d, e, f , g, h, i, z].

T3 =(4be f jkmz3 + 2bcdhi jlm + cdegkmz2, cdegh jlz, 2de f ghilz + 4 jlz6+

de f jlz2, begh jlmz + 4ceghiz2 + bde f lz2) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l,m, z].

T4 =(2c f hiz2 + bde f h, bc f i jz + 4bcghi, 2cde jz + 4cd f j + i jz2, bcd f gi jz+

cdi jz3, 3bcei jz + 3cgi jz2 + beiz3, 4bch jz + cgiz2, beh j, 3cde f hiz+

2bd f g jz + 2bch jz2) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

T5 =(4bc2d2e2gh2iz2 + b2ciz9 + 2bceg2hz5, bcd2e2g2h2, bc f hz5 + b2d f g2iz,

4bc2e2 f 2h2i2z2 + b2c2e2 f h2iz3, 2b2de2 f 2hi2z + 3b2c2e2h2i2)

⊂ Q[b, c, d, e, f , g, h, i, z].

T6 =(4bcd f ghlz + 3bc f hlz3, be f hkl + de f ghz, 3bde f hi jklz + 2c f h jkz5+

bdehkz4, 4be f i jkl + dgklz3, bcde f gh j + 2bcdegi jz + 2bcdh jklz,

cdegi jz + 3bcde f k + 4 f hklz2, 2bdegh jkz + cdez5 + 3egh jz3,

bcdghi jz + cd f hklz + 2bcdhkz2, 2bcde f i + bhi jkl, egh jkz5+

2bce f gh jkl, gilz2 + 2beil, g, 3cde f i jkl + 4bcdg jz3, cdehi jz + 4ceg jz3,

bchkl, cd f ghklz + be f hilz + cd f g jlz, f iz5 + 2cd f ghk + bd f hiz,

be f i jklz2 + 3bcdghi jl, 2bgi jklz + 2bcghil + ce f h jz, 2de f gh jz+

30 Communications of JSSAC Vol. 4

3ce f hi jz + 3bdghiz) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

T7 =(c f ghi jklz + cdz7, 3bdikz7 + 3bcde f ghikl + 4b f ghkz5, 3be f ghi jkz+

2bcegi jz3, 3c f h jlz + d f h jlz + 4bd f kl, 3be jz4 + bd f g jk + 2beg jz2,

cde f g jkz + 3e f g jlz2 + 4elz5, bcde f gh jk, 4ceh jlz4 + 3ceghi jkl,

e f gh jklz, ik, 4beghi jkz3 + 3bdeghi jkl, cde f kl + dg jklz, 2bghi jlz+

bcdgiz + 4egh jkz, bcehi jklz + cdghi jlz2, 2bcde f glz + 2c f gi jlz2+

chz6, 4bde f h jlz + bdhi jlz + 2de f gklz, 2cdgiklz + cehklz2 + 4cghilz,

ch jkl, 2bcdhi jlz + cgi jz4, bd f hi jkz + 4bdi jkz3 + 2dhlz4)

⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

T8 =(3be jz4 + bd f g jk + 2beg jz2, cde f g jkz + 3e f g jlz2 + 4elz5, bcde f gh jk,

4ceh jlz4 + 3ceghi jkl) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z]

T9 =(3hz4 + 2cd f g, bde f gh + c f gz3 + cgz4, bcgz2 + cde f + de f z, , 3e f gh+

bcez + 2b f z2, 3de f h + 2cegh, dehz + 4cgz2, 2cde f hz + chz3, 3cde f hz+

2c f ghz, 3d f ghz + 2e f hz2 + 2bcgz, bdhz + 2e f z + 2bhz)

⊂ Q[b, c, d, e, f , g, h, z].

T10 =(4cd f h jkz + 4e f hi jz2 + cehiz2, bcd f iz, 3bde f h j + 4cdeghz, cdegkz+

bdiz3, bcdkz2 + 2beg jk, 2cde f hi jz + 3cehi jz3 + bcdhz4, e f h jkz + 3bc f hz,

2bcegiz + 3dghi jz + 3 f ghiz, bd f jz + d f jkz, 4e f hikz + 3be f hi + 2d f ghi,

cdhi jz + 2e f gkz2, bcdgikz2 + bcd f gik, d f gikz, 2bcdghiz + bcegiz2+

bd f i jk, cde f ghi jz, bcdegi jkz + cde f kz4, 4bd f gh jz + bdgkz3 + 2bcdei j,

ce f ghi jkz + 4de f gikz3 + 4eghkz4, bcdgi jkz + cegh jkz2 + 4ce f ghz3)

⊂ Q[b, c, d, e, f , g, h, i, j, k, z].

P1 =(x) ⊂ Q[x, y, z].

P2 =(x13, x23, x33, x43) ⊂ Q[xi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 5].

P3 =(b, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P4 =(e, i, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P5 =(g, h, z) ⊂ Q[b, c, d, e, f , g, h, i, z].

P6 =(h, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l,m, z].

P7 =(b, j, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P8 =(f , g, i) ⊂ Q[b, c, d, e, f , g, h, i, z].

P9 =(z4 + hdb, c, g, k, l) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P10 =(b, c, e, h, i, j) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P11 =(e, k) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P12 =(e, g, z) ⊂ Q[b, c, d, e, f , g, h, z].

P13 =(e, g, k, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, z].

P14 =(x, y) ⊂ Q[x, y, z].

P15 =(x12 x31 − x32 x11, x42 x11 − x41 x12, x42 x31 − x41 x32, x44 x31 − x41 x34,

x44 x32 − x42 x34, x13, x21, x22, x23, x24, x33, x43)

⊂ Q[xi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4].

P16 =(x16 x27 − x17 x26, x34 x13 − x33 x14, x37 x16 − x36 x17, x36 x27 − x37 x26,

Communications of JSSAC Vol. 4 31

x12, x15, x21, x22, x23, x24, x25, x32, x35) ⊂ Q[xi j | 1 ≤ i ≤ 3, 1 ≤ j ≤ 7].

P17 =(e, f , j, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P18 =(c, d, j, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P19 =(−4 f ec + 3d, b, g, h, z) ⊂ Q[b, c, d, e, f , g, h, i, z].

P20 =(l f db + 4higc, e, j,m) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l,m, z].

P21 =(c, d, h, j, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P22 =(c, d, g, i, z) ⊂ Q[b, c, d, e, f , g, h, i, z].

P23 =(b, c, d, e, f , g, h, i, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P24 =(g, i, j, l, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P25 =(f , g, k, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P26 =(c, e, g, h, z) ⊂ Q[b, c, d, e, f , g, h, z].

P27 =(c + 4 j f , b, d, g, h, k, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, z].

Communications of JSSAC (2020)
Vol. 4, pp. 33 – 49

Simple Signature-Based Algorithms with Correctness

and Termination

Kosuke Sakata∗

Graduate School of Environment and Information Sciences, Yokohama National University

(Received 3/Jun/2020 Accepted 12/Nov/2020)

Abstract

We show correctness and termination of signature-based algorithms for computing Gröbner

bases, together with some remarks on those algorithms. Compared to rewrite basis algorithm

introduced by Eder and Roune in 2012, we describe an equivalent algorithm called “alterna-

tive rewrite basis algorithm” more concretely, with giving self-contained proofs of the cor-

rectness and the termination of the algorithm more clearly and transparently. The original

rewrite basis algorithm seems to be designed so that it is efficient when POT is chosen as a

module order and it proceeds incrementally like: computing Gröbner bases of ⟨ f1⟩, ⟨ f1, f2⟩,
⟨ f1, f2, f3⟩, . . . , ⟨ f1, f2, . . . , fm⟩ in order for polynomials { fi}i=1,2,3,...,m. We clarify the reason of

the efficiency in that case. If we use the original rewrite basis algorithm with a module order

other than POT, we compute extra zero reductions. The algorithm presented in this paper is

modified to keep the efficiency as much as possible when we choose a module order other than

POT.

Keywords: Gröbner Basis, rewrite basis algorithm, signature-based algorithm

1 Introduction
Gröbner bases are one of important research topics in algebra and is widely used in applications.

It is well-known that Gröbner bases are utilized for solving systems of polynomial equations. In

cryptography, Gröbner basis method was utilized for breaking a challenge of the first hidden field

equations (HFE) crypto system [10]. For other applications like coding theory, statistics and in-

teger programming problem etc., it is possible to obtain a solution by converting a problem into

a polynomial system and computing its Gröbner basis. Some engineering problems are necessary

to be dealt with problems of polynomial systems including parameters. For these problems, there

exits algorithms for computing comprehensive Gröbner bases. In the algorithms, Gröbner bases

are computed multiple times. In summary, Gröbner bases have a wide range of applications. It can

be expected that many works for such applications would progress by improving Gröbner basis

algorithms, as it accelerates computation of Gröbner bases.

∗sakata-kosuke-rb@g.ecc.u-tokyo.ac.jp

c⃝ 2020 Japan Society for Symbolic and Algebraic Computation

34 Communications of JSSAC Vol. 4

In 1964, Buchberger [2] introduced the notion of Gröbner bases and proposed an algorithm for

computing Gröbner bases. Since then, various improvements about the algorithm have been pro-

posed. As for computing a Gröbner basis, it is required to simplify polynomials, called a reduction.

Elements of a Gröbner basis are generated by reducing polynomials, and some polynomials are re-

duced to zero. The computations of zero reductions do not give any information of the Gröbner

basis. Moreover the number of zero reductions is tend to be larger than that of nonzero reductions.

Therefore, in order to decrease amount of calculations, methods for detecting polynomials which

are reduced to zero have been studied by many researchers.

One important improvement of Gröbner basis algorithms is F5 algorithm proposed by Faugère

in 2002 [9]. F5 algorithm discards many polynomials that are reduced to zero, comparing to con-

ventional algorithms.

When first proposed, the algorithm was complicated and the proof was incomplete. Since then,

F5 has been deeply studied and accurate proofs of correctness and termination have been submitted

(main references are [5, 11, 12, 14, 15]). Several algorithms and methods for improving F5 have

been proposed (main references are [1, 3, 4, 6, 8, 13]). F5 is now recognized as one of signature-

based algorithms. The paper [7] compiled studies of signature-based algorithms, so that we can

overview research of signature-based algorithms. In the paper, signature-based algorithms are

generalized as rewrite basis algorithm (RB) [6]. The algorithm in [1] called Arri and the algorithm

in [13] called GVW are introduced as RB with RAT selected for a rewrite order. The explanations

and the definitions of rewrite basis algorithm, a rewrite order and RAT are not given in this paper

because they are too long. When we choose RAT for a rewrite order, rewrite basis algorithm

becomes the most efficient. The proofs of correctness and termination in [7] are not self-contained

unfortunately. Additionally, RB is not provided as an efficient algorithm in case we choose module

orders other than POT (position over term) because RB is introduced as a generalized signature-

based algorithm.

In this paper, we introduce alternative rewrite basis algorithm (altRB) (see Algorithm 4 in

Section 6). This algorithm is efficient for an arbitrary module order other than POT, and more-

over it is concrete enough to be implemented. As the main results of this paper, we prove the

correctness (Theorem 20) and the termination (Theorem 21) of altRB. By designing the algorithm

concretely, the proofs of the correctness and the termination are clearer and more transparent. The

proofs are done by several steps. In each step, we discuss the correctness and the termination of

an algorithm. The algorithms are fundamental signature-based semi-algorithm1) (fundSB), simple

signature-based algorithm (simpleSB), simple syzygy signature-based algorithm (syzSB), alterna-

tive rewrite basis algorithm (altRB). The algorithms in earlier steps are less complex. We believe

that the proofs of Theorem 20 and Theorem 21 are easy for the reader to understand, as so are the

proofs of each step. In Section 7, we prove that RB has an exceptional advantage when POT is

chosen for a module order and RB proceeds incrementally. On the other hand, altRB is designed

to be suitable for an arbitrary module order.

This paper is organized as follows. In Section 2, we recall notations and definitions in [7] of

signature-based algorithms. In Section 3, we focus on that signature-based algorithms compute a

Gröbner basis in the ascending order of signature. In order to look at the behavior of the algorithms,

we study fundamental signature-based semi-algorithm (fundSB), which is simpler than subsequent

algorithms. Although this semi-algorithm does not terminate, it helps us grasp the idea and how

signature-based algorithms work, and also make clear the proofs of the correctness and the termina-

tion of the subsequent algorithms. In Section 4, we study a basic signature-based algorithm, which

terminates in finite steps. The algorithm is called “simple signature-based algorithm (simpleSB)”.

1)When the word semi-algorithm is used, it is intended that the process may not terminate. The word semi-algorithm is

used only for fundamental signature-based semi-algorithm (fundSB).

Communications of JSSAC Vol. 4 35

It is essentially equivalent to the algorithm genSB [7]. However, the proofs of the correctness and

the termination are partially different to those of [7] and are described in detail. In Section 5, we

focus on methods for detecting polynomials which are reduced to zero. The methods are specific

to signature-based algorithms. Simple syzygy signature-based algorithm (syzSB) is considered to

illustrate the method. In Section 6, alternative rewrite basis algorithm (altRB) is introduced. We

show the termination and the correctness of altRB. In Section 7, we discuss the number of zero

reductions and module orders as in one previous paragraph.

It is known that signature-based algorithms compute not only a signature Gröbner basis but

also a Gröbner basis of the syzygy module for a given input system. syzSB and altRB outputs

the leading terms of Gröbner basis of the syzygy module. If you give small modification, they can

output a Gröbner basis itself. But we do not refer to the fact and its proofs, see [13] and [7].

2 Notation
Let R be a polynomial ring over a field K. Let us denote K \ {0} by K×. For a, b ∈ R, we write a | b
if b is divisible by a.

Let f1, f2, . . . , fm be elements of R. Let e1, e2, . . . , em be the standard basis of a free module Rm.

Consider the homomorphism

¯: Rm −→ R

defined by

α =

m∑
i=1

aiei 7−→ α =

m∑
i=1

ai fi,

where a1, . . . , am ∈ R, especially ei = fi holds.

We choose a monomial order ≤ on R, and choose a module order ≼. The module order is

required to be compatible with the monomial order, that means: aei ≼ bei for i = 1, . . . ,m for all

monomials a, b ∈ R in case a ≤ b. An element of Rm of the form aei for a monomial a of R is called

a term of Rm. Let α = aei and β = be j be terms, if there exists c ∈ K× such that a = cb and i = j,
we write α ≃ β and we say that α and β are equivalent. If a | b and i = j, we write α | β. For f ∈ R,

LT(f) denotes the leading term of f with respect to the monomial order. For α ∈ Rm, the signature
s(α) of α is defined to be the leading term of α with respect to the module order.

Let G be a subset of Rm. For α, α′ ∈ Rm, we say that α is s-reduced to α′ if there exist β ∈ G
and b ∈ R satisfying the three conditions:

(a) LT(bβ) = t for a (certain) monomial t in α

(b) s(bβ) ≼ s(α)

(c) α′ = α − bβ.

At this time, we call β a reducer. We say that α is singularly s-reduced to α′ if the condition (b)
above is replaced by s(bβ) ≃ s(α), and otherwise that α is regularly s-reduced to α′. If there exists

c ∈ K such that LT(bβ) = c LT(α), the s-reduction is called top s-reduction and otherwise called

tail s-reduction. If the α ∈ Rm cannot be s-reduced, we say that α is completely s-reduced. If the

α ∈ Rm cannot be regularly top s-reduced, we say that α is completely regularly top s-reduced. If

the α ∈ Rm can be both neither regularly top s-reduced nor regularly tail s-reduced, we say that α is

completely regularly full s-reduced. If α ∈ Rm is completely s-reduced and α is 0 ∈ R, then we say

36 Communications of JSSAC Vol. 4

that α is completely s-reduced to 0 ∈ R (Remark: it does not mean that α is completely s-reduced

to 0 ∈ Rm).

A subset G ⊆ Rm is a signature Gröbner basis up to signature T if all α ∈ Rm with s(α) ≺ T are

completely s-reduced to 0 ∈ R with respect to G. A subset G ⊆ Rm is a signature Gröbner basis
in signature T if all α ∈ Rm with s(α) ≺ T are completely s-reduced to 0 ∈ R with respect to G. A

subset G ⊆ Rm is a signature Gröbner basis if all α ∈ Rm are s-reduced to 0 ∈ R with respect to

G. The signature-based algorithms compute a signature Gröbner basis. If G is a signature Gröbner

basis, then {g | g ∈ G} is a Gröbner basis of the ideal generated by {g | g ∈ G}.

Proposition 1
Let I be the ideal generated by { f1, . . . , fm}, let G be a signature Gröbner basis. Then, {g | g ∈ G}

is a Gröbner basis of the ideal ⟨g | g ∈ G⟩.

Proof First, we show α ∈ I for any α ∈ G. Let α ∈ G, which is written as
∑m

i=1 riei, for ri ∈ R.

Then α =
∑m

i=1 riei =
∑m

i=1 ri fi.
Assume that {g | g ∈ G} is not a Gröbner basis of I. Then, there exists h ∈ I such that h is not top

reducible by {g | g ∈ G}. As h ∈ I, one can write h as
∑m

i=1 ai fi for ai ∈ R. Put β =
∑m

i=1 aiei ∈ Rm.

Then, we have β = h. Since G is a signature Gröbner basis, β is top s-reducible. This means that h
is top reducible. This is a contradiction.

A signature Gröbner basis G is minimal if there does not exist an element α in G which top

s-reduces any other elements in G \ {α}. We also use the word “minimal” for a signature Gröbner

basis in G and up to G.

3 Fundamental signature-based semi-algorithm
In this section, fundamental signature-based semi-algorithm (fundSB) is considered. It helps us to

comprehend how signature-based algorithms work. Specifically almost all signature-based algo-

rithms proceed in the ascending order of signatures. fundSB is a prototype of them. Algorithm 1
is the pseudocode of fundSB.

Algorithm 1 Fundamental signature-based semi-algorithm (fundSB)

Input : a finite subset F = { f1, . . . , fm} of R.

Step 1 α← the minimal term in Rm which is bigger than the terms computed before

Step 2 α′ ← result of completely regularly top s-reducing α by G
Step 3 (i) If α′ = 0

Go to Step 1

(ii) If α′ , 0

(a) If α′ is singularly top s-reducible by G
Go to Step 1

(b) If α′ is not singularly top s-reducible by G
G ← G ∪ {α′}
Go to Step 1

fundSB does not terminate, because it will compute all terms in Rm and the number of elements

of Rm are infinite. However, we can prove the following properties:

Communications of JSSAC Vol. 4 37

(A) at the end of Step 3, G is a signature Gröbner basis in α,

(B) at the end of Step 1, G is a signature Gröbner basis up to α.

If (A) is satisfied, (B) is true because fundSB computes in the ascending order of terms in Rm step

by step. We shall prove (A) in Proposition 5. For this, we need Lemmas 2, 3 and 4 below.

Remark : fundSB could terminate, if we modify fundSB as following:

(1) Select a term β ∈ Rm, a monomial order and a module order such that the number of terms

up to β is finite.

(2) Terminate fundSB when the calculation progresses to β.

In this case, fundSB outputs a signature Gröbner basis up to β.

Lemma 2 is called singular criterion [3].

Lemma 2
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α and β in Rm satisfy

(1) s(α) = s(β) ≼ T ,

(2) α and β are completely regularly top s-reduced by G.

Then, LT(α) = LT(β). Moreover, if α and β are completely regularly s-reduced, then α = β.

Proof (The former) Assume that LT(α) , LT(β). Then, either LT(α − β) = LT(α) or LT(α − β) =
LT(β) is satisfied. Since s(α) = s(β), we have s(α−β) ≺ s(α) ≼ T . Therefore, α−β is top s-reducible

by G, that is, there exists a pair (γ, a) ∈ G × R such that s(aγ) ≼ s(α − β) and LT(aγ) = LT(α − β).
This aγ satisfies that s(aγ) ≺ s(α) = s(β) and either LT(aγ) = LT(α) or LT(aγ) = LT(β). Then, aγ
regularly top s-reduce α or β. This contradicts that α and β are completely regularly top s-reduced.

(The latter) Assume that α − β , 0. The leading term of α − β is the term included in either α
or β. Since s(α) = s(β), we have s(α−β) ≺ s(α) ≼ T . Therefore, α−β is top s-reducible by G, that

is, there exists a pair(γ, a) ∈ (G,R) such that s(aγ) ≼ s(α − β) and LT(aγ) = LT(α − β). This aγ
satisfies that s(aγ) ≺ s(α) = s(β) and there exists a term in α or β such that the term is the same as

LT(aγ). Then, aγ regularly s-reduce α or β. This contradicts that α and β are completely regularly

s-reduced.

Let T be a term in Rm. When we have a signature Gröbner basis up to T ∈ Rm, and let α ∈ Rm

satisfy s(α) ≼ T and α is completely regularly top s-reduced and singularly top s-reducible, then

we can discard α thanks to Lemmas 3 and 4 below.

Lemma 3
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ Rm and β ∈ G satisfy

(1) s(α) ≼ T ,

(2) α is completely regularly top s-reduced by G,

(3) there exists a ∈ R which satisfies s(α) ≃ s(aβ) and LT(α) = LT(aβ).

Then, s(α) = s(aβ).

38 Communications of JSSAC Vol. 4

Proof Assume that s(α) , s(aβ). Then, there exists c ∈ K that satisfies c , 1 and s(α) = cs(aβ).
Since s(α − caβ) ≺ s(α) ≼ T , we have that α − caβ is top s-reducible by G. Therefore, there

exists a pair (γ, b) ∈ G × R that satisfies s(bγ) ≼ s(α − caβ) and LT(bγ) = LT(α − caβ). Since

LT(α − caβ) ≃ LT(α), we have that γ regularly top s-reduce α. This contradicts that α is completely

regularly top s-reduced.

Lemma 4
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ Rm satisfies

(1) s(α) ≼ T ,

(2) α is completely regularly top s-reduced by G,

(3) α is singular top s-reducible by G.

Then, α is s-reduced to 0 ∈ R by G.

Proof Let β ∈ G be a reducer which singularly top s-reduces α. From Lemma 3, there exists

a ∈ R that satisfies LT(α) = LT(aβ) and s(α) = s(aβ). Then, we have that s(α − aβ) ≺ s(α), so

α − aβ is s-reduced to 0 ∈ R by G.

Let us prove (A) mentioned in the second paragraph of this section.

Proposition 5
At the end of Step 3 in fundSB, G is a signature Gröbner basis in α at the every loop.

Proof Let α be the term chosen in the latest Step 1. Let α′ be the result of completely regularly

top s-reducing α. Let G be a signature Gröbner basis up to α. We prove that G is a signature

Gröbner basis in α after the end of Step 3, that is, all β ∈ Rm with s(β) ≼ α are s-reduced to 0 ∈ R
by G.

Since G is a signature Gröbner basis up to α, then β ∈ Rm with s(β) ≺ α is s-reduced to 0 ∈ R by

G. Then, let β satisfy s(β) ≃ α. As we s-reduce β by G step by step, suppose β would be changed

as follows: β → β(1) → β(2) → · · · → β(i) → · · · . Assume an s-reduction such that s(β(i)) = s(aγ)
(a ∈ R, γ ∈ G) occurs for a certain i. Since s(β(i+1)) ≺ α for the i, in this case, β is s-reduced

to 0 ∈ R. Suppose that such an s-reduction does not occur. Let β′ be the result of completely

s-reducing β. Note that s(β′) ≃ α and β′ is completely regularly top s-reduced. From Lemmas 2

and 3, there exists c ∈ K such that s(α′) = cs(β′) and LT(α′) = c LT(β′).
We consider the result of s-reducing β in the following three cases according to how α′ was

handled in Step 3.

(i) If α′ = 0, then β′ as well as α′ is s-reduced to 0 ∈ R by Lemma 2.

(ii) If α′ , 0 and α′ is singularly top s-reducible, then β′ as well as α′ is singularly top s-

reducible. By Lemma 4, we have that β′ is s-reduced to 0 ∈ R.

(iii) If α′ , 0 and α′ is not singularly top s-reducible, then β′ is singularly top s-reducible by

α′ since s(α′) = cs(β′) and LT(α′) = c LT(β′), and α′ is included in G. By Lemma 4, β′ is

s-reduced to 0 ∈ R.

From the above, we have proved that all β ∈ Rm with s(β) ≼ α are s-reduced to 0 ∈ R by G.

Thus, G is a signature Gröbner basis in α at the end of Step 3.

The set G computed in fundSB is minimal.

Communications of JSSAC Vol. 4 39

Lemma 6
Let T ∈ Rm be a term chosen at Step 1 in fundSB. Let G in fundSB be the set after Step3 of T .

Then, G is a minimal signature Gröbner basis in T .

Proof By Proposition 5, G is a signature Gröbner basis in T . Let α be an element in G. For

β ∈ G with s(β) ≺ s(α), clearly β is not top s-reducible by α. For β ∈ G with s(β) ≽ s(α), β is not

regularly top s-reducible by α because of Step 2. Moreover, β is not singularly top s-reducible by

α because of Step 3 (ii) (b). Then, β is not top s-reducible by α. Thus, there is no element in G
which top s-reduces any other elements in G. Therefore, G is a minimal signature Gröbner basis

in T .

4 Simple signature-based algorithm
In this section, we introduce simple signature-based algorithm (simpleSB), and show that it termi-

nates and outputs a signature Gröbner basis. Before introducing the algorithm, we define an S-pair,

which is an analogy of S-polynomial. The S-pair of α, β ∈ Rm is defined to be

spair(α, β) =
λ

LT(α)
α − λ

LT(β)
β,

where λ is the least common multiple (of monomials) as λ = lcm(LT(α),LT(β)). If

s

(
λ

LT(α)
α

)
≃ s

(
λ

LT(β)
β

)
,

we say that the S -pair is singular, otherwise, we say that the S-pair regular. Algorithm 2 is

the pseudocode of simpleSB. Note that simpleSB outputs a minimal signature Gröbner basis by

Lemma 6.

Algorithm 2 Simple signature-based algorithm (simpleSB)

Input : a finite subset F = { f1, . . . , fm} of R.
Output: a minimal signature Gröbner basis G of F.

Step 0 G ← ∅, P← {e1, . . . , em}
Step 1 If P = ∅, return G

α← the minimal term in P
P← P\{α}

Step 2 α′ ← result of completely regularly top s-reducing α by G
Step 3 (i) If α′ = 0

Go to Step 1

(ii) If α′ , 0

(a) If α′ is singularly top s-reducible by G
Go to Step 1

(b) If α′ is not singularly top s-reducible by G
P← P ∪ {s(spair(α′, β)) | β ∈ G, spair(α′, β) is regular} (#)

G ← G ∪ {α′}
Go to Step 1

40 Communications of JSSAC Vol. 4

Remark : In Step 2 of Algorithm 2, we execute only regularly “top” s-reduction depending on

the description of the algorithm. However, we can execute regularly “tail” s-reduction, and the

correctness and the termination of the algorithm are not affected by the modification. In terms of

(#) in simpleSB, it is sufficient to leave only one term α among terms which are equivalent to α
in P. Even if more than two equivalent terms are left in P, simpleSB terminates and outputs a

signature Gröbner basis.

Let us give an outline of the proofs of the correctness and the termination. The difference

between fundSB and simpleSB is that simpleSB computes terms in Rm that appear in Step 3 (ii)

(b). In Proposition 12, we prove that G is a signature Gröbner basis in α when Step 3 for α is

finished. It follows from Lemma 11 that it is not necessary to compute terms ≼ α that do not

appear at (#). The termination of simpleSB is proved by Proposition 13. When the algorithm

terminates, G is a signature Gröbner basis, by Lemma 11 and Propositions 14 and 12.

Lemmas 7, 8, 9 and 10 are used for proving Lemma 11.

Lemma 7
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ G and let a be a

monomial in R satisfy

(1) s(aα) ≼ T ,

(2) aα is regularly top s-reducible by G.

Then, there exists an S-pair a′α − bβ (a′ and b are monomials in R, β is in G) such that

(3) s(a′α − bβ) = s(a′α),

(4) a′ | a.

Proof Let a′ be the minimal monomial in the set consisting of the monomials r ∈ R satisfying

that r | a and rα is regularly top s-reducible. Since a′α is regularly top s-reducible, there exists a

pair (β, b) ∈ G × R such that s(a′α) ≻ s(bβ) and LT(a′α) = LT(bβ). Let d = a′ LT(α) = b LT(β).
Assume that GCD(a′, b) = m with m , 1. Then, a′ and b are written as a′ = ma′′ and b = mb′

such that GCD(a′′, b′) = 1. For a′′α and b′β, note that s(a′α) ≻ s(bβ) leads to s(a′′α) ≻ s(b′β) and

a′ LT(α) = b LT(β) leads to a′′ LT(α) = b′ LT(β). This means that a′′α is regularly top s-reducible

and a′′ < a′. This contradicts the minimality of a′. Therefore, m = 1 and GCD(a′, b) = 1. There

exists e ∈ K× such that d = e lcm(LT(α),LT(β)). Then, we have

a′α − bβ =
d

LT(α)
α − d

LT(β)
β =

e lcm(LT(α),LT(β))

LT(α)
α − e lcm(LT(α),LT(β))

LT(β)
β.

This is an S-pair satisfying (3) and (4).

Lemma 8
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ Rm satisfy

(1) s(α) ≼ T ,

(2) α is completely regularly top s-reduced by G.

Then, any pair (β, a) ∈ G × R with s(α) = s(aβ) satisfies LT(α) ≤ LT(aβ).

Communications of JSSAC Vol. 4 41

Proof Assume that there exists a pair (β, a) ∈ G × R such that s(α) = s(aβ) and LT(α) > LT(aβ).
Let γ be the result of completely regularly top s-reducing aβ. Then, we have LT(α) > LT(aβ) ≥
LT(γ) and s(α) = s(γ). This contradicts Lemma 2.

Lemma 9
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ G and let a be a

monomial in R satisfy

(1) s(aα) ≼ T ,

(2) aα is completely regularly top s-reduced by G.

Then, there do not exists a pair (β, b) ∈ G × R such that

(3) s(aα − bβ) = s(aα),

(4) aα − bβ is a regular S-pair.

Proof We prove the contraposition. Assume that there exists a pair (β, b) ∈ G × R satisfying (3)

and (4). This means that s(aα) ≻ s(bβ) and LT(aα) = LT(bβ). Then, aα is regularly top s-reducible

by bβ.

Lemma 10
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α and β in Rm satisfy

(1) s(α) ≼ T ,

(2) α is completely regular top s-reduced,

(3) s(β) ≃ s(α),

(4) LT(β) > LT(α).

Then, β is regularly top s-reducible.

Proof Assume that β is not regularly top s-reducible, that is, β is completely regularly top s-

reduced by G. From Lemma 2, we have LT(β) = LT(α). This contradicts LT(β) > LT(α).

Lemma 11 means that we do not need to compute terms that do not appear as signatures of

regular S-pairs.

Lemma 11
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α ∈ Rm satisfies

(1) s(α) ≃ T ,

(2) s(α) is equivalent to a signature of a regular S-pair that does not appear in Step 3 (ii) (b).

Let α′ be the result of completely regularly top s-reducing α by G. Then, α′ is singularly top

s-reducible by G. In particular, G is a signature Gröbner basis in T .

42 Communications of JSSAC Vol. 4

Proof Let β ∈ G and let a be a monomial in R satisfying s(aβ) = s(α′) such that LT(aβ) is

minimal. We prove that LT(aβ) ≃ LT(α′). By Lemma 8, we have LT(α′) ≤ LT(aβ).
Assume that LT(α′) < LT(aβ). By Lemma 10, aβ is regularly top s-reducible. Consider a′β

such that a′ is a monomial in R and the monomial a/a′ ∈ R r K. Assume that a′β is regularly

top s-reducible by G. And let γ be the result of regularly top s-reducing a′β. Then, we have

LT(a′β) > LT(γ). As a′ < a, we have s(γ) = s(a′β) ≺ s(aβ) ≃ T . This means that γ is top

s-reducible. However, γ is completely regularly s-reduced, then γ is singularly top s-reducible. By

Lemma 3, there exists a pair (ω, r) ∈ G × R such that s(γ) = s(rω) and LT(γ) = LT(rω). Note that

s(a′β) = s(rω) and LT(a′β) > LT(rω). By multiplying the both sides of the two equations by a/a′,
we have s(aβ) = a/a′s(rω) and LT(aβ) > a/a′ LT(rω) and note that a

a′ is a term of R. This means

that there exists a pair (ω, ar/a′) ∈ G×R such that s((ar/a′)ω) = s(aβ) and LT((ar/a′)ω) < LT(aβ).
This contradicts the minimality of LT(aβ).

Therefore, a′β with a/a′ ∈ RrK is not regularly top s-reducible. From Lemmas 7 and 9, there

exists an S-pair aβ − bω′ such that s(aβ − bω′) = s(aβ) for b ∈ R and ω′ ∈ G. This means that a

regular S-pair whose signature is s(aβ) = α appears in Step 3 (ii) (b) (#). This is a contradiction.

Thus, we have LT(α′) ≃ LT(aβ). Then, α′ is singularly top s-reducible by G.

It follows from Lemma 4 that α′ is s-reduced to 0 ∈ R by G. Thus, G is a signature Gröbner

basis in T .

Proposition 12
Let T ′ in Rm be a term chosen at Step 1 in Algorithm 2, and let T be the term chosen just before

T ′. Assume that G in Algorithm 2 is a signature Gröbner basis in T after Step 3 of the loop starting

with α = T . Then, G is a signature Gröbner basis in T ′ after Step 3 of the loop starting with α = T ′.

Proof First, we prove that G is a signature Gröbner basis up to T ′ when T ′ is chosen in Step

1. Suppose G is not a signature Gröbner basis up to T ′. Consider the set of terms α ∈ Rm with

T ≺ α ≺ T ′ satisfying that G is not a signature Gröbner basis in α. Let α0 be the minimal element

of the set. Note that any set of terms in Rm has a minimal element. Then, G is a signature Gröbner

basis up to α0. Because α0 is not selected before T ′ is selected, an S-pair whose signature is

equivalent to α0 does not appear in the algorithm. By Lemma 11, G is a signature Gröbner basis

in α0. This contradicts that G is not a signature Gröbner basis in α0. Therefore, G is a signature

Gröbner basis up to T ′. The operation on G for T ′ in Algorithm 2 is exactly same as that in

Algorithm 1. By Proposition 5, G is a signature Gröbner basis in T ′ after Step 3 of the loop

starting with α = T ′.

Our proof of termination is similar to the papers Eder-Perry [5], Roune-Stillman [3] and Eder-

Roune [6].

Proposition 13 (Termination)
simpleSB terminates in finite steps.

Proof We write R = K[x1, . . . , xk]. Set

R′ = K[x1, . . . , xk, y11, . . . , ymk, z1, . . . , zm].

For β ∈ Rm, we write (s(β),LT(β)) = (cxv1

1
xv2

2
· · · xvk

k ei, r), where c ∈ K, v = (v1, . . . , vk) ∈ Zk
≥0

and

r is a term of R. Let f : Rm → R′ be the map defined by β 7→ ryv1

i1 · · · y
vk
ik zi. Let G(α) be the G (in

Algorithm 2) obtained when Step 3 is finished for α, where α was chosen in Step 1. Consider the

following monomial ideal I(α) = ⟨ f (β) | β ∈ G(α)⟩.

Communications of JSSAC Vol. 4 43

Let α1, α2, . . . be the elements chosen in this order in Step 1 of Algorithm 2. Then we have the

sequence G(α1) ⊂ G(α2) ⊂ · · · and also I(α1) ⊂ I(α2) ⊂ · · · . Any ascending sequence of ideals in

R′ is stable since R′ is a Noetherian ring. There exists i0 such that for i > i0 we have I(αi) = I(αi0).

For i < j, we claim that G(αi) (G(α j) if and only if I(αi) (I(α j). The “if”-part is obvious.

We prove the “only if”-part in the following way. Suppose that G(αi) (G(α j) and I(αi) = I(α j).

Let β ∈ G(α j) r G(αi). By f (β) ∈ I(α j) = I(αi), there exists β′ ∈ G(αi) such that f (β′)| f (β),
since I(αi) is the ideal generated by the monomials f (β′′) for β′′ ∈ G(αi). If f (β′) | f (β), we have

LT(β′) | LT(β) and s(β′) | s(β), by the definition of f . Hence, there exist elements β and β′ of G(α j)

with β , β′ such that LT(β′) | LT(β) and s(β′) | s(β). This contradicts that simpleSB computes a

minimal signature Gröbner basis in s(α j).

Thus we have shown that G(αi) = G(αi0) for i > i0. Hence G in Algorithm 2 does not grow

after αi0 , which means that Step 3 (ii) (b) does not occur after αi0 and therefore P does not grow

after αi0 . However, in Step 1, the number of elements in P decreases by one in each step. Thus,

Algorithm 2 terminates in finite steps.

Proposition 14 (Correctness)
simpleSB outputs a signature Gröbner basis when simpleSB terminates.

Proof Let T be the term in Rm chosen in Step 1, and finally computed before simpleSB terminates.

By Proposition 12, G is a signature Gröbner basis in T . Suppose G is not a signature Gröbner basis.

Consider the set of terms α ∈ Rm with T ≺ α satisfying that G is not a signature Gröbner basis

in α. Let α0 be the minimal element of the set. Then, G is a signature Gröbner basis up to α0.

However, an S-pair whose signature is equivalent to α0 does not appear in the algorithm because

the algorithm terminates at T . By Lemma 11, G is a signature Gröbner basis in α0. This contradicts

that G is not a signature Gröbner basis in α0. Therefore, G is a signature Gröbner basis.

5 Simple syzygy signature-based algorithm
In this section, one of the methods to detect zero reductions like F5 and GVW is described. By

Lemma 2, because of fie j − f jei = 0, elements in Rm whose signatures are s(fie j − f jei) are com-

pletely regularly s-reduced to 0 ∈ R. Moreover, because of r(fie j − f jei) = 0 for all r ∈ R\{0},
elements in Rm whose signatures are s(r(fie j − f jei)) are completely regularly s-reduced to 0 ∈ R.

In summary, we have :

Proposition 15
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α, β, γ ∈ Rm satisfy

s(α) ≼ T and s(βγ − γβ) | s(α). Then, α is completely regularly s-reduced to 0 ∈ R by G.

Proof Let r be a monomial in R such that s(α) = s(r(βγ − γβ)). Let α′ be the element obtained

by completely regularly s-reducing α. Note that r(βγ − γβ) is the completely regularly s-reduced

element by G because r(βγ − γβ) = 0. By Lemma 2, we have LT(α′) = LT(r(βγ − γβ)) = 0. Then,

α is completely regularly s-reduced to 0 ∈ R by G.

The next proposition gives a method to detect zero reductions, namely it gives a sufficient

condition for β ∈ R to be completely regularly s-reduced to 0 ∈ R by G, by means of the term α
which has been completely regularly s-reduced to 0 ∈ R.

Proposition 16
Let T be a term in Rm and let G be a signature Gröbner basis up to T . Let α and β in Rm satisfy

44 Communications of JSSAC Vol. 4

(1) α is completely regularly s-reduced to 0 ∈ R by G and

(2) s(α) | s(β).

Then, β is completely regularly s-reduced to 0 ∈ R by G.

Proof From the assumption, there exists γ ∈ Rm such that s(α − γ) = s(α) and α − γ = 0. Let

r ∈ R satisfy s(β) = rs(α). Then, s(r(α − γ)) = s(rα) = s(β) and r(α − γ) = 0. By Lemma 2, β is

completely regularly s-reduced to 0 ∈ R by G.

Algorithm 3 is simple syzygy signature-based algorithm (syzSB). syzSB is modified simpleSB
as to Propositions 15 and 16.

Algorithm 3 Simple syzygy signature-based algorithm (syzSB)

Input : a finite subset F = { f1, . . . , fm} of R.
Output: a minimal signature Gröbner basis G of F.

Step 0 G ← ∅, P← {e1, . . . , em},H ← ∅
Step 1 If P = ∅, return G

α← the minimal term in P
P← P\{α}

Step 2 If there exists γ ∈ H with γ | α, go to Step 1

Step 3 α′ ← result of completely regularly top s-reducing α by G
Step 4 (i) If α′ = 0

H ← H ∪ {α}
Go to Step 1

(ii) If α′ , 0

(a) If α′ is singularly top s-reducible by G
Go to Step 1

(b) If α′ is not singularly top s-reducible by G
P← P ∪ {s(spair(α′, β)) | β ∈ G, spair(α′, β) is regular} (#)

H ← H ∪ {s(βα′ − α′β) | β ∈ G}
G ← G ∪ {α′}
Go to Step 1

Proposition 17 (Correctness)
syzSB outputs a signature Gröbner basis.

Proof Let A be the set of the terms which simpleSB computes, and let B the set of the terms which

are completely regularly s-reduced to 0 ∈ R by G. By Propositions 15 and 16, syzSB computes the

set A \ B. Then, the output G of syzSB is the same as that of simpleSB.

Proposition 18 (Termination)
syzSB terminates in finite loops.

Proof By Propositions 15 and 16, the set P at each step 1 in syzSB is exactly same as that at the

corresponding Step 1 in simpleSB. Further, simpleSB computes finite number of the terms.

Communications of JSSAC Vol. 4 45

6 Alternative rewrite basis algorithm
In this section, alternative rewrite basis algorithm (altRB) is introduced. In the paper [6], rewrite

basis algorithm (RB) is introduced as a generalized signature-based algorithm. altRB is repre-

sented easily to understand operations of the algorithm and easily to implement it. It is the most

useful signature-based algorithm for implementation in this paper. From the discussion so far, sin-

gularly top s-reducible elements which are completely regularly top s-reduced need not be included

in G. We can expect to improve the algorithm by discarding such elements without reduction. In

other words, it is enough to regularly s-reduce the elements which will be an elements of a mini-

mal signature Gröbner basis. Moreover, we can expect to improve the efficiency by replacing the

element α for the element whose signature is the same and which is not needed to reduce more

times . Among the algorithms proposed so far, the algorithm in paper [1], GVW [13], etc. have

used the method. The paper [7] introduced such algorithms as RB with RAT selected for rewrite

order. When we choose RAT for a rewrite order, rewrite basis algorithm becomes the most effi-

cient. altRB is simply introduced and as efficient as RB with RAT. Algorithm 4 is the pseudocode

of altRB.

Algorithm 4 Alternative rewrite basis algorithm (altRB)

Input : a finite subset F = { f1, . . . , fm} of R.
Output: a minimal signature Gröbner basis G of F.

Step 0 G ← ∅, P← {e1, . . . , em},H ← ∅
Step 1 If P = ∅, return G

α← the minimal term in P
P← P\{α}

Step 2 If there exists γ ∈ H with γ | α, go to Step 1

Step 3 α′ ← ω ∈ {α} ∪ {rβ | r ∈ R, β ∈ G, s(rβ) = α} such that LT(ω) is minimal

Step 4 α′′ ← result of completely regularly top s-reducing α′ by G
Step 5 (i) If α′′ = 0

Append α to H
(ii) If α′′ , 0 and (α′ is regularly top s-reduced at least one time or s(α′′) is a standard

basis)

P← P ∪ {s(spair(α′′, β)) | β ∈ G, spair(α′′, β) is regular} (#)

H ← H ∪ {s(βα′′ − α′′β) | β ∈ G} (∗)
G ← G ∪ {α′′}

Go to Step 1

Remark : In Step 4, we execute only regularly “top” s-reduction according to the description of the

algorithm. However, we can execute regularly “tail” s-reduction, and correctness and termination

of the algorithm are not affected. For (#), it is sufficient to leave only one term α in P as for the

terms α ≃ β. Although it is not efficient, if more than two terms are left, correctness and termination

of the algorithm are not affected.

Lemma 19
Let α′ and α′′ be obtained at Step 3 and at Step 4 in Algorithm 4 respectively. Let G be a signature

Gröbner basis up to s(α′′). The condition at Step 5 (ii) in Algorithm 4 is equivalent to the condition

that α′′ is not singularly top s-reducible by G.

46 Communications of JSSAC Vol. 4

Proof If s(α′′) is a standard basis of Rm, say ei, there is no element in G whose signature belongs

to Rei. Thus, α′′ is not singularly top s-reducible by G. If α′ is regularly top s-reduced at least one

time at Step 4, we have LT(α′′) < LT(α′). For all b ∈ R and β ∈ G such that s(α′′) = s(bβ), we

have LT(α′′) < LT(α′) ≤ LT(bβ) by the minimality of LT(α′) at Step 3. Then, α′′ is not singularly

top s-reducible by G.

Conversely, if α′′ is not singularly top s-reducible, we consider the following two cases : (a)
s(α′′) is not a standard basis of Rm and (b) otherwise. In case (a), we claim that there exists a pair

(β, a) ∈ G × R with s(α′′) = s(aβ). Let the signature of α′′ be rei (r ∈ R \ K×). The standard

basis of Rm ei is chosen at Step 1 before rei is chosen because ei is smaller than rei. Assume that

there does not exist an element of G whose signature is ei. The element whose signature is ei is

regularly s-reduced to 0 ∈ R, then we proceed Step 5 (i). In this case, elements whose signatures

are rei do not appear in P. This means that we do not compute such an element rei. It contradicts

that the signature of α′′ is rei (r ∈ R \ K×). Then, there is an element of G whose signature is ei.

Thus, (r, ei) is a pair that we claimed. Consider the set of pairs (β, a) ∈ G × R with s(α′′) = s(aβ).
Let (β′, a′) be a pair such that LT(a′β′) is minimal in the set. Note that LT(aβ) = LT(α′) because

of the process at Step 3. By Lemma 8, we have LT(α′′) ≤ LT(aβ). If LT(α′′) = LT(aβ), α′′ is

singularly top s-reducible. This contradicts that α′′ is not singularly top s-reducible. Then, we

have LT(α′′) < LT(aβ) = LT(α′). This means that α′ is regularly top s-reduced at least one time at

Step 4. In case (b), there is nothing to prove.

Theorem 20 (Correctness)
altRB outputs a signature Gröbner basis.

Proof We prove by confirming the difference between the algorithm and the syzSB. At Step 3, by

Lemma 2, as long as the signature is the same, we can choose any elements in Rm. Thus, we can

choose the element with the smaller leading term.

At Step 5, altRB does not have branch whether α′′ is singularly top s-reducible or not. Instead

of the above, altRB check whether α′ is regularly top s-reduced at least one time at Step 4 and

check whether s(α′′) is a standard basis of Rm. By Lemma 19, they are equivalent.

Theorem 21 (Termination)
altRB terminates in finite steps.

Proof The set P at every step 1 in altRB is exactly same as that at the corresponding Step 1 in

syzSB. Further, syzSB computes finite number of the terms.

7 Module orders and zero reductions
In the paper [7], RB does not contain the line (∗) of Algorithm 4. This is because RB is introduced

as a generalized signature-based algorithm. If we implement as so, we have to be careful for the

number of zero reductions during the calculation. In case we choose POT as a module order and

compute incrementally, like Algorithm 4, the number of zero reductions becomes small. Espe-

cially, if the polynomial systems are regular sequences, the number of zero reductions is zero. In

case we choose a module order other than POT or a module order not to be suitable for incremental

computation, the number of zero reductions increases during calculation.

It can be proved that the update of H is sufficient to be done first as in Algorithm 5 in case

POT is chosen as the module order and it is calculated incrementally,

Communications of JSSAC Vol. 4 47

Algorithm 5 Alternative rewrite basis algorithm (incremental)

Input : a Gröbner basis F = { f1, . . . , fm−1} ⊂ R, a polynomial fm ∈ R.
Output: a minimal signature Gröbner basis G of F ∪ { fm}.
Step 0 G ← { f1, . . . , fm−1}, P← {em},H ← {s(eiem − emei) | 1 ≤ i ≤ m − 1}
Step 1 If P = ∅, return G

α← the minimal term in P
P← P\{α}

Step 2 If there exists γ ∈ H with γ | α, go to Step 1

Step 3 α′ ← ω ∈ {α} ∪ {rβ | r ∈ R, β ∈ G, s(rβ) = α} such that LT(ω) is minimal

Step 4 α′′ ←result of completely regularly top s-reducing α′ by G
Step 5 (i) If α′′ = 0

Append α to H
(ii) If α′′ , 0 and (α′ is regularly top s-reduced at least one time or s(α′′) is a standard

basis)

P← P ∪ {s(spair(α′′, β)) | β ∈ G, spair(α′′, β) is regular} (#)

G ← G ∪ {α′′}
Go to Step 1

Lemma 22
Let α′′ be a new element at Step 5 (ii) in Algorithm 5 with POT such that e1 ≺ e2 ≺ · · · ≺ em. For

all β ∈ G, there exists γ ∈ H such that γ | s(α′′β − βα′′).

Proof First, we prove H = {rem | r ∈ HT(F)}. We have s(eiem − emei) = s(eiem) because the

module order is POT. Then, we have s(eiem) = s(fiem) = s(HT(fi)em) = HT(fi)em.

Let α′′ and β ∈ G be written as α′′ =
∑m

i=1 riei and β =
∑m

j=1 r′je j, for ri, r′i ∈ R. Then, we have

α′′ =
∑m

i=1 ri fi ≡ hm fm (mod F).

α′′β − βα′′ =
 m∑

i=1

ri fi

 ·
 m∑

j=1

r′je j

 −
 m∑

j=1

r′j f j

 ·
 m∑

i=1

riei

=

 m∑

i=1

ri fi

 · r′m −
 m∑

j=1

r′j f j

 · rm

 em + · · ·

We focus on polynomial part of em. m∑
i=1

ri fi

 · r′m −
 m∑

j=1

r′j f j

 · rm ≡ rm fmr′m − r′m fmrm (mod F)

≡ 0 (mod F)

Therefore, there exists an element in H which divides s(α′′β − βα′′).

8 Conclusion
We have presented some signature-based (semi-)algorithms for computing Gröbner bases: fundSB,

simpleSB, syzSB and altRB. Among them, altRB is a practical signature-based algorithm and can

48 Communications of JSSAC Vol. 4

be implemented easily in any computer algebra system, as altRB is described concretely. The other

(semi-)algorithms are used auxiliarily to prove the correctness and the termination of altRB. The

characteristics of the (semi-)algorithms are as follows:

1. fundSB is a prototype of signature-based algorithms, and helps us grasp the idea and how

signature-based algorithms work. However, it does not terminate.

2. simpleSB is obtained by modifying fundSB with the concept of S-pairs so that it terminates.

It outputs a signature Gröbner basis with a finite number of operations.

3. syzSB is obtained by including a step detecting zero reductions into simpleSB. The step is

assured by Propositions 15 and 16.

4. altRB is obtained by inserting in syzSB a step replacing the term by an element which has a

smaller leading term. This enables us to reduce the number of regular s-reductions significantly.

By discussing the correctness and the termination of these (semi-)algorithms step by step, we

have finally obtained the correctness and the termination of altRB. The proofs are self-contained

and very clear. altRB is efficient for an arbitrary module order. In the last section, we have

discussed how signature-based algorithms work when POT is chosen as a module order and when

it proceeds incrementally.

As a future work, it would be meaningful to study the relation between input systems and

module orders we choose, toward finding an efficient module order for a given input system.

Acknowledgement
This paper is a part of the dissertation written by the author under the supervision by Prof. Shushi

Harashita. The author thanks him for his constant supports. The author thanks Prof. Kazuhiro

Yokoyama and Prof. Masayuki Noro for discussions on the topic of this manuscript. The author

is grateful to the anonymous referees for their helpful and kind comments. A part of this work

has been supported by Joint research promotion program of Graduate School of Environment and

Information Sciences, Yokohama National University.

References
[1] Arri, A., Perry, J.: The F5 criterion revised.: Journal of Symbolic Computation, 46,

1017–1029, 2011.

[2] Buchberger, B.: Bruno Buchberger’s Ph.D. thesis 1965: An algorithm for finding the basis el-

ements of the residue class ring of a zero dimensional polynomial ideal.: Journal of Symbolic
Computation, 41, 475–511, 2006. https://doi.org/10.1016/j.jsc.2005.09.007

[3] Roune, B.H., Stillman, M.: Practical Gröbner basis computation.: Proceedings of the 2012

International Symposium on Symbolic and Algebraic Computation , 203–210, ACM, New

York, 2012. https://arxiv.org/abs/1206.6940 (extended version)

[4] Eder, C., Perry, J.: F5C: a variant of Faugère’s F5 algorithm with reduced Gröbner bases.:

Journal of Symbolic Computation, 45, no. 12, 1442–1458, 2010.

[5] Eder, C., Perry, J.: Modifying Faugère’s F5 algorithm to ensure termination.: ACM SIGSAM
Commun. Comput. Algebra, 45, 70–89, 2011.

Communications of JSSAC Vol. 4 49

[6] Eder, C., Roune, B.H.: Signature rewriting in Gröbner basis computation.: Proceedings of

the 2013 International Symposium on Symbolic and Algebraic Computation, 331–338, 2013.

[7] Eder, C., Faugère, J.-C.: A survey on signature-based algorithms for computing Gröbner

bases.: Journal of Symbolic Computation, 80, part 3, 719–784, 2017.

[8] Ars, G., Hashemi, A.: Extended F5 criteria.: Journal of Symbolic Computation, 45 (12) ,

1330–1340, 2010.

[9] Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to

zero (F5).: Proceedings of the 2002 International Symposium on Symbolic and Algebraic

Computation, 75–83, ACM, New York, 2002.

[10] Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE) cryptosys-

tems using Gröbner bases.: CRYPTO 2003, Advances in Cryptology, vol. 2729, 44–60, 2003.

[11] Pan, S., Hu, Y., Wang, B.: The termination of algorithms for computing Gröbner bases.:

2010. http://arxiv.org/abs/1202.3524

[12] Galkin, V.: Termination of original F5.: 2012. http://arxiv.org/abs/1203.2402

[13] Gao, S., Volny, F. IV, Wang, M.: A new framework for computing Gröbner bases.: Mathe-
matics of Computation, 85, 449–465, 2016. https://doi.org/10.1090/mcom/2969

[14] Vaccon, T., Yokoyama, K.: A tropical F5 algorithm.: Proceedings of the 2017 International

Symposium on Symbolic and Algebraic Computation, 429–436, ACM, 2017.

[15] Vaccon, T., Verron, T., Yokoyama, K.: On Affine Tropical F5 Algorithms.: Proceedings of

the 2002 International Symposium on Symbolic and Algebraic Computation, 383–390, ACM,

2018.

Editorial board
Editor-in-Chief: Katsusuke Nabeshima

Editors: Yosuke Sato

Yasuyuki Nakamura

Katsuyoshi Ohara

Masaru Sanuki

International Advisory board
Bruno Buchberger

Hoon Hong

Hyungju Park

Dongming Wang

Communications of JSSAC Vol. 4 2020

Publisher Japan Society for Symbolic and Algebraic Computation

Office zip 102–0074

Resona Kudan Building 5F KS Floor, 1-5-6 Kudanminami Chiyoda-ku Tokyo, Japan

	Cover
	V4_page_Part2
	V4_page_Part1
	V4_101
	Introduction
	Mathematical Basis
	Definition of Primary Decomposition and Localization
	Fundamental Properties of Ideal Quotient

	Double Ideal Quotient
	Criteria for Primary Component and Prime Divisor
	General Primary Component Criterion
	Other Criteria for Primary Component
	Criterion for Isolated Primary Component:
	Criterion for Maximal Primary Component:
	Criterion for Another General Primary Component:

	Additional Criterion for Prime Divisor

	Local Primary Algorithm
	Generating Primary Component
	Techniques for Improving LPA
	Another Way of Generating Primary Component
	Regular Sequence Computation for Pseudo-Primary Ideal
	Equidimensional Hull Computation with MIS

	Further Discussion of Local Primary Algorithm
	Experiments and Observations
	Computation of Isolated Components
	Computation of Embedded Components
	Summary on Computational behavior

	Conclusion and Future Work
	Fundamental Lemmas and their Proofs (Appendix)
	Lemmas and Definitions
	Ideals and Prime Ideals in Experiments

	hakushi
	V4_102
	Introduction
	Notation
	Fundamental signature-based semi-algorithm
	Simple signature-based algorithm
	Simple syzygy signature-based algorithm
	Alternative rewrite basis algorithm
	Module orders and zero reductions
	Conclusion

	hakushi
	V4_page_Part3

