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Abstract

Hermitian quadratic forms play a key role in a real roots counting theory for zero-dimensional
ideals. A method based on the theory has a great effect on quantifier elimination of first order
formulas containing many equalities. Its essential part eliminates a block of quantifiers by the
parametric Hermitian quadratic forms of the parametric zero-dimensional ideal generated by
the equalities and the parametric polynomials constructing the inequalities of the given first
order formula. When the parametric ideal is non-radical, the Hermitian quadratic forms are
unnecessarily complicated, which produce a complicated quantifier-free formula. We may ob-
tain a simple quantifier-free formula by the Hermitian quadratic forms of the radical. However,
the computational complexity of parametric radical is high even in zero-dimensional cases. In
the paper, to simplify quantifier-free formulas produced by the quantifier elimination method,
we introduce minimal Hermitian quadratic forms which are applied to the theory.

1 Introduction
The concept of Hermitian Quadratic Forms (HQFs) plays a key role in a Real Roots Counting
(RRC) theory for univariate polynomials. Independently in [1, 10], the RRC theory was extended
to zero-dimensional ideals of multivariate polynomial rings by using the theory of Gröbner Bases
(GBs). In the paper, the RRC theory is called “the Hermitian RRC theory”. A Quantifier Elimi-
nation (QE) method based on the Hermitian RRC theory has a great effect on QE of First Order
Formulas (FOFs) which contain many equalities. In the paper, the QE method introduced in [13]
and improved in [2, 3, 4, 5] is called “the Hermitian QE method”. In the Hermitian QE method,
parametric HQFs play an important role to produce quantifier-free formulas (QFFs). In the pa-
per, such QFFs are called “Hermitian QE formulas”. In the section, to describe the outline of the
essential part of the Hermitian QE method, we introduce Ā = A1, . . . , Am as free variables and
X̄ = X1, . . . , Xn as quantified variables. Let φ be a QFF consisting only of polynomial equalities
and disequalities (= and ,) of Q[Ā]. The essential part of the Hermitian QE method is the algo-
rithm which computes a Hermitian QE formula from the given FOF having the following form for
polynomials f1, . . . , fs, p1, . . . , pt ∈ Q[Ā, X̄]:

φ(Ā) ∧ ∃X̄ ∈ Rn ( f1(Ā, X̄) = 0 ∧ . . . ∧ fs(Ā, X̄) = 0 ∧ p1(Ā, X̄) > 0 ∧ . . . ∧ pt(Ā, X̄) > 0), (1)
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where f1, . . . , fs and p1, . . . , pt satisfy the following property 1 for Pφ = {ā ∈ Cm : φ(ā)}:

1. I(ā, X̄) = ⟨ f1(ā, X̄), . . . , fs(ā, X̄)⟩ is a zero-dimensional ideal of C[X̄] for any ā ∈ Pφ.

In the paper, we improve the algorithm introduced in [3] and implemented with several techniques
of [4]. Given an admissible term order ≻ on terms consisting of X̄, it produces a disjunction
equivalent to (1). The disjunction consists of finitely many FOFs such as the following form:

Φ(Ā) ∧ ∃X̄ ∈ Rn (
∧
g∈G

g(Ā, X̄) = 0 ∧ p1(Ā, X̄) > 0 ∧ . . . ∧ pt(Ā, X̄) > 0), (2)

where Φ is a QFF satisfying the following property 2, and G is a finite subset of Q[Ā, X̄] satisfying
the following properties 3 and 4 for the product p =

∏t
i=1 pi and SΦ = {ā ∈ Cm : Φ(ā)}:

2. Φ consists only of polynomial equalities and disequalities of Q[Ā], and satisfies SΦ ⊂ Pφ.

3. {g(ā, X̄) : g ∈ G} is a GB of the saturation I′(ā, X̄) = I(ā, X̄) : p(ā, X̄)∞ for any ā ∈ SΦ.

4. Each g ∈ G satisfies lg(ā) , 0 for the leading coefficient lg = LC(g) ∈ Q[Ā] and any ā ∈ SΦ.

The disjunction is produced by a Comprehensive Gröbner System (CGS) of the parametric satura-
tion ideal ⟨ f1, . . . , fs⟩ : p∞ on Pφ w.r.t. ≻ considering Ā as parameters (See Definition 6 - Remark
8). The concept of CGSs was introduced in [12] as a powerful tool for parametric ideals. We
consider it as a system of parametric GBs. With a series of resent results of [6, 7, 8, 9, 11], we
now have efficient CGS computation algorithms. Moreover, as a result of [5], we can efficiently
compute CGSs of parametric zero-dimensional saturation.

Let pe =
∏t

i=1 pei
i for e = (e1, . . . , et) ∈ {0, 1}t. The algorithm computes a Hermitian QE

formula Φ(Ā) ∧ ϕ(Ā) of the FOF (2) such that ϕ(ā) is equivalent to∑
e∈{0,1}t

sign(HI′(ā,X̄)
pe(ā,X̄)

) > 0 (Let Hā
e = HI′(ā,X̄)

pe(ā,X̄)
) (3)

for any ā ∈ SΦ ∩ Rm, where each sign(Hā
e ) is the signature of the HQF of the polynomial pe(ā, X̄)

and the ideal I′(ā, X̄) (See Definition 1 - Theorem 5). The FOF (2) has the properties 2 - 4. So,
using G, we are able to compute each parametric HQF, which is the uniform representation of the
HQF Hā

e for any ā ∈ SΦ ∩ Rm (See Remark 9, 10). ϕ are produced by the parametric HQFs (See
Proposition 11). When I′(ā, X̄) is not radical, unfortunately, the parametric HQFs are unnecessarily
complicated, which produces a very complicated ϕ (See Example 12). We may obtain simple ϕ
by using the parametric HQF of its radical. However, the computational complexity of parametric
radical is high even in zero-dimensional cases.

In the paper, we introduce a concept of minimal HQFs (See Definition 13 - Remark 14), and
the Hermitian RRC theory with minimal HQFs. We then show that the concept of minimal HQFs
enables us to simplify unnecessarily complicated Hermitian QE formulas without the computations
of parametric radical ideals. (See Example 21).

The paper is organized as follow: In Section 2, we give a quick review of the essential part of the
Hermitian QE method with an innovative improvement of [3] and several implementation tech-
niques of [4]. More precisely, we describe the Hermitian RRC theory with HQFs in Subsection
2.1, describe CGSs in Subsection 2.2, and describe the essential part in Subsection 2.3. In Section
3, we show the main theorem of the paper.
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2 Theoretical Background
We use the following symbols: N, Q, R and C denote the set of natural numbers, rational numbers,
real numbers and complex numbers respectively. (M)(i, j), rank(M), tr(M) and det(M) denote the
(i, j)-entry, the rank, the trace and the determinant of a square matrix M respectively. For a real
symmetric square matrix H, sign(H) denotes the number such that “the number of the positive
eigenvalues of H” minus “the number of the negative eigenvalues of H”. Identifying H with its
quadratic form, we obtain that sign(H) is equal to the signature of H. Ā and X̄ denote A1, . . . , Am

and X1, . . . , Xn respectively. T (X̄) denotes a set of terms in X̄. Given a term order on T (X̄), LM( f ),
LT( f ) and LC( f ) denote the leading monomial, the leading term and the leading coefficient of
f ∈ Q[Ā, X̄] respectively. We have to note LM( f ) = LC( f )LT( f ) and LC( f ) ∈ Q[Ā]. VR(F) and
VC(F) denote the variety of a set F ⊂ R[X̄] over R and C respectively. That is, we obtain

VR(F) = {x̄ ∈ Rn : ∀ f ∈ F( f (x̄) = 0)}, VC(F) = {x̄ ∈ Cn : ∀ f ∈ F( f (x̄) = 0)}.

#(S ) denotes the cardinality of a finite set S .

2.1 Hermitian Quadratic Forms
In the subsection, we give the Hermitian RRC theory shown independently in [1, 10] and show a
theorem implying the essential part of [3, 4]. First of all, we define HQFs.

Definition 1 Let p ∈ R[X̄], I be a zero-dimensional ideal of R[X̄]. Considering the residue class
ring R[X̄]/I as a vector space, let {v1, . . . , vd} be its basis. For 1 ≤ i, j ≤ d, we give the linear map

hI
(p,i, j) : R[X̄]/I → R[X̄]/I ; g 7→ pviv jg.

Moreover, we define the d-th real symmetric matrix HI
p such that each (HI

p)(i, j) satisfies

(HI
p)(i, j) = tr(hI

(p,i, j)).

The d-th real symmetric matrix HI
p is called the HQF of p and I.

Remark 2 With the same symbols as Definition 1, RT(G) denotes the set of the reduced terms w.r.t.
a GB G of I. That is, RT(G) = {t ∈ T (X̄) : ∀g ∈ G (t is indivisible by LT(g))}. RT(G) plays a role
as a basis {v1, . . . , vd} of R[X̄]/I. The k-th column of hI

(p,i, j) is produced by the reminder of pviv jvk

on division by G. (HI
p)(i, j) is equal to the sum of the diagonal entries of hI

(p,i, j).

We give the Hermitian RRC theory with HQFs shown independently in [1, 10].

Theorem 3 For p ∈ R[X̄] and a zero-dimensional ideal I of R[X̄],

rank(HI
p) = #({x̄ ∈ VC(I) : p(x̄) , 0}), (4)

sign(HI
p) = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0}). (5)

We obtain the corollary which follows from Theorem 3 because HQFs are real symmetric.

Corollary 4 The characteristic polynomial of HI
p is denoted by CI

p. We suppose

C
I
p(Y) = b+d Yd + b+d−1Yd−1 + · · · + b+0 ∈ R[Y],

C
I
p(−Y) = b−d Yd + b−d−1Yd−1 + · · · + b−0 ∈ R[Y].
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Bϱ denotes the number of sign changes of the coefficient sequence (bϱd, b
ϱ
d−1, . . . , b

ϱ
0) for ϱ ∈ {+,−}

(0 is ignored in the sequence). Since each eigenvalue of HI
p is real, Theorem 3 and Descartes’ sign

rule imply

B+ − B− = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0}).

We conclude the subsection with the theorem which follows from Theorem 3, Corollary 4 and [3]
(Corollary 3 - Theorem 5).

Theorem 5 Let p1, . . . , pt ∈ R[X̄], I be a zero-dimensional ideal of R[X̄]. Let Z̄ = Z1, . . . ,Zt,
p =

∏t
i=1 pi, and J = I + ⟨1 − p1Z2

1 , . . . , 1 − ptZ2
t ⟩ ⊂ R[X̄, Z̄]. Then, we obtain

#VR(J) = 2t#({x̄ ∈ VR(I) :
t∧

i=1

pi(x̄) > 0}).

by [3] (Corollary 3). Let I′ = I : p∞ and pe =
∏t

i=1 pei
i for e = (e1, . . . , et) ∈ {0, 1}t. We note that I′

is equal to the elimination ideal J ∩ R[X̄]. Thus, [3] (Corollary 4 and Theorem 5) implies

C
J
1(Y) = c

∏
e∈{0,1}t

C
I′
pe

(Y)

for some non-zero constant c. For e ∈ {0, 1}t, B+e and B−e denote the number of sign changes in the
coefficient sequences of CI′

pe
(Y) and CI′

pe
(−Y) respectively. Then, Theorem 3 and Corollary 4 imply

0 <
∑

e∈{0,1}t
(B+e − B−e )⇔ 0 < #({x̄ ∈ VR(I) :

t∧
i=1

pi(x̄) > 0}).

2.2 Comprehensive Gröbner Systems
We describe CGSs in the subsection. Before defining CGSs, we define algebraic partitions.

Definition 6 LetP be a subset of Cm and S1, . . . ,Sq be subsets ofP. When the properties such that∪q
i=1 Si = P and Si ∩S j = ∅ for 1 ≤ i , j ≤ q and Si = VC(S 1) \ VC(S 2) with finite S 1, S 2 ⊂ Q[Ā]

for 1 ≤ i ≤ q are satisfied, {S1, . . . ,Sq} is called an algebraic partition of P.

Definition 7 Let P ⊂ Cm and S1, . . . ,Sq ⊂ P. Let F,G1, . . . ,Gq be finite subsets of Q[Ā, X̄]. Let ≻
be a term order on T (X̄). When G = {(S1,G1), . . . , (Sq,Gq)} satisfies the properties such that

• {S1, . . . ,Sq} is an algebraic partition of P, and

• Gi(ā, X̄) = {g(ā, X̄) : g ∈ Gi} is a GB of ⟨F(ā, X̄)⟩ ⊂ C[X̄] w.r.t. ≻ for each ā ∈ Si, and

• any g ∈ Gi satisfies LC(g)(ā) , 0 for each ā ∈ Si,

G is called a CGS of ⟨F⟩ on P with parameters Ā w.r.t. ≻. In addition, each Si a segment, and
each Gi a parametric GB.

Remark 8 With the same symbols as (1), letG be a CGS of ⟨ f1, . . . , fs⟩ : p∞ onPφ with parameters
Ā w.r.t. ≻ and ΦS be a defining formula of S for (S,G) ∈ G. Then, the FOF (1) is equivalent to∨

(S,G)∈G

ΦS ∧ ∃X̄ ∈ Rn

∧
g∈G

g = 0 ∧
t∧

i=1

pi > 0


 .

Moreover, each ΦS satisfies the property 2, and each G satisfies the properties 3, 4 of (2).
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Remark 9 With the same symbols as the properties 2 - 4 of (2), let s ∈ Q[Ā, X̄]. For the reminder of
s(ā, X̄) on division by G(ā, X̄), its uniform representation s′ ∈ Q(Ā)[X̄] is produced by the reminder
of s on division by G over Q(Ā)[X̄] such that the coefficient field is the rational function field Q(Ā).
Because G has the properties 3, 4 of (2). More precisely, each coefficient of s′ has a form s1/s2
such that s1, s2 ∈ Q[Ā] satisfy s2(ā) , 0.

Remark 10 We use the same symbols as the properties 2 - 4 of (2). The properties 2 - 4 of (2) imply
that ⟨G(ā, X̄)⟩ is zero-dimensional and RT(G(ā, X̄)) is invariant. In addition, we have also Remark
2 and 9. Therefore, we can compute the uniform representation H⟨G⟩pe of the HQF of pe(ā, X̄) and
⟨G(ā, X̄)⟩, whose each entry has the form s1/s2 such that s1, s2 ∈ Q[Ā] satisfy s2(ā) , 0. In the
paper, the symmetric matrix H⟨G⟩pe is called the parametric HQF of pe and ⟨G⟩. More precisely, each
entry also has the form s1/s2 such that s1, s2 ∈ Q[Ā] satisfy s2(ā) , 0.

2.3 Hermitian Quantifier Elimination
We give the essential part of the Hermitian QE method with [3, 4], which follows from Theorem
5.

Proposition 11 With the same symbols as the properties 2 - 4 of (2), let pe =
∏t

i=1 pei
i for e =

(e1, . . . , et) ∈ {0, 1}t. Since Remark 10 implies that each C⟨G⟩pe has rational functions of Q(Ā) as its
coefficients, we suppose

C
⟨G⟩
pe

(Y) = b+d Yd + b+d−1Yd−1 + · · · + b+0 ∈ Q(Ā)[Y],

C
⟨G⟩
pe

(−Y) = b−d Yd + b−d−1Yd−1 + · · · + b−0 ∈ Q(Ā)[Y].

Let S ϱe = (bϱd, . . . , b
ϱ
0) for ϱ ∈ {+,−}. Let Bϱe(ā) be the number of sign changes in S ϱe(ā) =

(bϱd(ā), . . . , bϱ0(ā)) for ā ∈ SΦ ∩ Rm. Using the numerator and denominator polynomials of S ϱe ,
we compute the QFF ϕ(Ā) such that ϕ(ā) is equivalent to

0 <
∑

e∈{0,1}t
(B+e (ā) − B−e (ā))

for ā ∈ SΦ ∩ Rm. Then, Theorem 5 implies that Φ ∧ ϕ is equivalent to (2).

Although we can obtain a Hermitian QE formula of (2) based on Proposition 11, the Hermitian QE
formula is unnecessarily complicated in the case such that the parametric ideal is not radical.

Example 12 We consider the FOF as like A , 0 ∧ ∃X ∈ R ((X − A)2 = 0 ∧ X > 0). We treat
I = ⟨(X − A)2⟩ : X∞ with a parameter A. Computing a CGS of I on S = {a ∈ C : a , 0} w.r.t
the term order ≻ satisfying X0 ≺ X1 ≺ · · · with a parameter A, we obtain {(S, {(X − A)2})}. Let
GI = {(X − A)2}. Since RT(GI) = {1, X}, we obtain

H⟨G
I⟩

1 =

(
2 2A
2A 2A2

)
, H⟨G

I⟩
X =

(
2A 2A2

2A2 2A3

)
.

We have theirs characteristic polynomials

C
⟨GI⟩
1 = Y2 − 2(A2 + 1)Y, C⟨G

I⟩
X = Y2 − 2A(A2 + 1)Y.

Let b1 = −2(A2 + 1), bX = −2A(A2 + 1) ∈ Q[A]. Then, we obtain the Hermitian QE formula

A , 0 ∧ b1 < 0 ∧ bX < 0.
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Because, for any ideal I of R[X̄] and any polynomial p of R[X̄] with I : p∞ = I, Theorem 3 implies

{x̄ ∈ VR(I) : p(x̄) > 0} , ∅ ⇔

sign(HI
1) > 0 ∧

 ∨
0≤k<sign(HI

1)

(sign(HI
p) = sign(HI

1) − k)


 .

Meanwhile, we consider the parametric radical J =
√

I. We obtain {(S, {X − A})} as a CGS of J
over S w.r.t. ≻. Let GJ = {X − A}. Since RT(GJ) = {1}, we obtain

H⟨G
J⟩

1 =
(

1
)
, H⟨G

J⟩
X =

(
A

)
.

Moreover, we have theirs characteristic polynomials C⟨G
J⟩

1 = Y − 1, C⟨G
J⟩

X = Y − A. Thus, we obtain
also the simple Hermitian QE formula A , 0 ∧ −A < 0 by using the parametric radical.

3 Minimal Hermitian Quadratic Forms
In cases such as Example 12, the HQFs are unnecessarily complicated, which produces a very
complicated Hermitian QE formula. In the section, we introduce a concept of minimal HQF, show
the Hermitian RRC theory with minimal HQFs, and reconsider Example 12. In more detail, we
prove the main theorem in Subsection 3.1 and reconsider Example 12 in Subsection 3.2. First of
all, we introduce the definition of minimal HQFs.

Definition 13 Let p ∈ R[X̄], I be a zero-dimensional ideal of R[X̄] and r = rank(HI
p). We assume

r , 0. (6)

HI
p(C) denotes the r-th principal matrix of HI

p such that each (HI
p(C))(i, j) satisfies

(HI
p(C))(i, j) = (HI

p)(Ci,C j)

for C = (C1, . . . ,Cr) ∈ Nr with 1 ≤ C1 < . . . < Cr ≤ d. We choose c = (c1, . . . , cr) ∈ Nr with

rank(HI
p(c)) = r (7)

and 1 ≤ c1 < . . . < cr ≤ d. Then, the principal matrix HI
p(c) is called a minimal HQF of HI

p.

Remark 14 The known fact of linear algebra implies that there are some c = (c1, . . . , cr) ∈ Nr

with (7) and 1 ≤ c1 < . . . < cr ≤ d because we assume (6).

We show the Hermitian RRC theory with minimal HQFs as the main theorem.

Theorem 15 (Main Theorem) Using the same symbols as Definition 13, we obtain the property

sign(HI
p(c)) = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0}).

Theorem 15 implies the corollary because minimal HQFs also are real symmetric.

Corollary 16 The characteristic polynomial of HI
p(c) is denoted by cDI

p. In addition, we suppose

c
D

I
p(Y) = γ+r Yr + · · · + γ+0 ∈ R[Y],

c
D

I
p(−Y) = γ−r Yr + · · · + γ−0 ∈ R[Y].

Let Γϱ be the number of sign changes in the coefficient sequence (γϱr , . . . , γ
ϱ
0) for ϱ ∈ {+,−}. Then,

Γ+ − Γ− = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0})

follows from Theorem 15 because all eigenvalues of HI
p(c) are real.
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3.1 Proof of Main Theorem
We use the same symbols as Definition 1, 13, Theorem 3, 15. z̄

′
denotes the conjugate of z̄ ∈ Cm.

We suppose that {x̄ ∈ VR(I) : p(x̄) , 0} and {z̄ ∈ VC(I) \VR(I) : p(z̄) , 0} have the following forms:

{x̄ ∈ VR(I) : p(x̄) , 0} = {x̄1, . . . , x̄µ},
{z̄ ∈ VC(I) \ VR(I) : p(z̄) , 0} = {z̄1, z̄

′

1, . . . , z̄ν, z̄
′

ν}.

Each σk denotes the multiplicity of x̄k and each ςk the multiplicity of z̄k, z̄
′

k. We start the subsection
(that is, the proof of Theorem 15) with the lemma which is used in [10] (Theorem 2.1).

Lemma 17 Stickelberger’s Theorem implies that each entry (HI
p)(i, j) is equal to

µ∑
k=1

σk p(x̄k)vi(x̄k)v j(x̄k) +
ν∑

k=1

(ςk p(z̄k)vi(z̄k)v j(z̄k) + ςk p(z̄
′

k)vi(z̄
′

k)v j(z̄
′

k)).

Let ui = vci for 1 ≤ i ≤ r. The following lemma follows from Lemma 17.

Lemma 18 Lemma 17 implies that each entry (HI
p(c))(i, j) is equal to

µ∑
k=1

σk p(x̄k)ui(x̄k)u j(x̄k) +
ν∑

k=1

(ςk p(z̄k)ui(z̄k)u j(z̄k) + ςk p(z̄
′

k)ui(z̄
′

k)u j(z̄
′

k)).

The imaginary unit is denoted by I. We introduce the real numbers pR
k , p

I
k, u

R
(i,k), u

I
(i,k) ∈ R satisfying

ςk p(z̄k) = (pR
k + Ip

I
k)2, ui(z̄k) = uR

(i,k) + Iu
I
(i,k),

for 1 ≤ k ≤ ν, 1 ≤ i ≤ r. Noting that (4) implies r = µ + 2ν, we introduce the r-th matrix

U =



u1(x̄1) · · · ur(x̄1)
...

...
u1(x̄µ) · · · ur(x̄µ)

pR
1 uR

(1,1) − pI
1uI

(1,1) · · · pR
1 uR

(r,1) − pI
1uI

(r,1)
pR

1 uI
(1,1) + pI

1uR
(1,1) · · · pR

1 uI
(r,1) + pI

1uR
(r,1)

...
...

pR
ν uR

(1,ν) − pI
νu

I
(1,ν) · · · pR

ν uR
(r,ν) − pI

νu
I
(r,ν)

pR
ν uI

(1,ν) + pI
νu

R
(1,ν) · · · pR

ν uI
(r,ν) + pI

νu
R
(r,ν)


.

In addition, we introduce the r-th diagonal matrix V whose the diagonal entry are

σ1 p(x̄1), . . . , σµp(x̄µ), 2,−2, · · · , 2,−2.

tH denotes the transpose of a matrix H. Then, we obtain the following proposition.

Proposition 19 HI
p(c) = tUVU.

Proof: Lemma 18 implies that each entry (HI
p(c))(i, j) is equal to

µ∑
k=1

σk p(x̄k)ui(x̄k)u j(x̄k) +
ν∑

k=1

((pR
k + Ip

I
k)2(uR

(i,k) + Iu
I
(i,k))(u

R
( j,k) + Iu

I
( j,k)) +

(pR
k − IpI

k)2(uR
(i,k) − IuI

(i,k))(u
R
( j,k) − IuI

( j,k))).
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Since V is diagonal, each entry (tUVU)(i, j) has the form as like

r∑
k=1

(tU)(i,k)(V)(k,k)(U)(k, j) =

r∑
k=1

(U)(k,i)(V)(k,k)(U)(k, j).

Therefore, each entry (tUVU)(i, j) is equal to

µ∑
k=1

σk p(x̄k)ui(x̄k)u j(x̄k) +
ν∑

k=1

(2(pR
k uR

(i,k) − pI
kuI

(i,k))(pR
k uR

( j,k) − pI
kuI

( j,k)) −

2(pR
k uI

(i,k) + pI
kuR

(i,k))(pR
k uI

( j,k) + pI
kuR

( j,k))).

Using the above expression of the entry (HI
p(c))(i, j) and (tUVU)(i, j), we introduce

βk = (pR
k + Ip

I
k)2(uR

(i,k) + Iu
I
(i,k))(u

R
( j,k) + Iu

I
( j,k)) + (pR

k − IpI
k)2(uR

(i,k) − IuI
(i,k))(u

R
( j,k) − IuI

( j,k)),

γk = 2(pR
k uR

(i,k) − pI
kuI

(i,k))(pR
k uR

( j,k) − pI
kuI

( j,k)) − 2(pR
k uI

(i,k) − pI
kuR

(i,k))(pR
k uI

( j,k) − pI
kuR

( j,k)).

Then, we obtain βk = γk for 1 ≤ k ≤ ν. Therefore, the assertion is satisfied. �

In addition, we show the following proposition by using the property (7) of minimal HQFs.

Proposition 20 rank(U) = r.

Proof: Let Eµ be the µ-th identity matrix. Moreover, we introduce the matrices Pk and J satisfying

Pk =

(
pR

k −pI
k

pI
k pR

k

)
, J =

1
2

(
1 1
−I I

)
for 1 ≤ k ≤ ν. In addition, we introduce the r-th matrices U1, U2 and U3 which have the forms

U1 =


Eµ 0 · · · 0

0 P1
. . .

...
...
. . .

. . . 0
0 · · · 0 Pν

 , U2 =


Eµ 0 · · · 0

0 J
. . .

...
...
. . .

. . . 0
0 · · · 0 J

 ,

U3 =



u1(x̄1) · · · ur(x̄1)
...

...
u1(x̄µ) · · · ur(x̄µ)

uR
(1,1) + Iu

I
(1,1) · · · uR

(r,1) + Iu
I
(r,1)

uR
(1,1) − IuI

(1,1) · · · uR
(r,1) − IuI

(r,1)
...

...
uR

(1,ν) + Iu
I
(1,ν) · · · uR

(r,ν) + Iu
I
(r,ν)

uR
(1,ν) − IuI

(1,ν) · · · uR
(r,ν) − IuI

(r,ν)


.

We have to note U = U1U2U3. In addition, we obtain det(U1) =
∏ν

k=1((pR
k )2+(pI

k)2) and det(U2) =
Iν. Therefore, we obtain also

det(U1) , 0, det(U2) , 0
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since {z̄1, z̄
′

1, . . . , z̄ν, z̄
′
ν} = {z̄ ∈ VC(I) \ VR(I) : p(z̄) , 0}. Let U4 be the r-th diagonal matrix having

σ1 p(x̄1), . . . , σµp(x̄µ), ς1 p(z̄1), ς1 p(z̄
′

1), . . . , ςνp(z̄ν), ςνp(z̄
′

ν)

as its diagonal entries. Lemma 18 implies HI
p(c) = tU3U4U3, so the property (7) give the property

det(U3) , 0.

Thereby, we obtain rank(U1) = r, rank(U2) = r and rank(U3) = r. Since we have also U = U1U2U3
shown in the above, the assertion is satisfied. �

We conclude the subsection with the proof of Theorem 15 by using Proposition 19, 20.

Proof of Theorem 15: Proposition 19, 20 and Sylvester’s law of inertia imply

sign(HI
h(c)) = sign(V).

Because V is the diagonal matrix with the diagonal entries σ1 p(x̄1), . . . , σµp(x̄µ), 2,−2, · · · , 2,−2,

sign(V) = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0}).

Therefore, we obtain the claim. �

3.2 Application
We reconsider Example 12 in the subsection.

Example 21 With the same symbols as Example 12, we have to note that H⟨G(a,X)⟩
1 and H⟨G

I (a,X)⟩
X

satisfy the assumption (6) for any a ∈ S. In addition, we have to note also that theirs determinants
are equal to 0 for any a ∈ S. First of all, by using the script (1) ∈ N1 we compute

H⟨G
I⟩

1 (1) =
(

2
)
, H⟨G

I⟩
X (1) =

(
2A

)
.

We compute theirs characteristic polynomials

D
⟨GI⟩
1 (Y) = Y − 2, D⟨G

I⟩
X (Y) = Y − 2A.

Let S(1,1) = S ∩ (VC(0) \ VC(−2)) ∩ (VC(0) \ VC(−2A)). Then, we obtain S(1,1) = S. Therefore, we
are able to obtain the simple Hermitian QE formula A , 0 ∧ −2A < 0.

In addition, we consider a more general example.

Example 22 Let Φ be the QFF A1A2 , 0 ∧ A2
2 − 4A3

3 = 0 and S = {ā ∈ C3 : Φ(ā)}. We consider

Φ ∧ ∃X̄ ∈ R2 (A1X2 + A2X1 + A3
3 = 0 ∧ X2

1 − A1X2 = 0 ∧ X1 > 0).

As a CGS of I = ⟨A1X2 + A2X1 + A3
3, X

2
1 − A1X2⟩ : X∞1 on S w.r.t the lexicographic term order ≻

satisfying X1 ≺ X2 with parameters A1, A2, A3, we obtain

{(S, {−4A1X2 − 4A2X1 − A2
2, (2X1 + A2)2})}.

Let GI = {−4A1X2 − 4A2X1 − A2
2, (2X1 + A2)2}. Since RT(GI) = {1, X1}, we obtain the HQFs

H⟨G
I⟩

1 =
1
2

(
4 −2A2
−2A2 A2

2

)
, H⟨G

I⟩
X1
=

1
4

(
−4A2 2A2

2
2A2

2 −A3
2

)
.
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We have theirs characteristic polynomials

C
⟨GI⟩
1 = Y2 − (2 +

A2
2

2
)Y, C⟨G

I⟩
X = Y2 +

A2

2
(2 +

A2
2

2
)Y.

Let b1 = −(2 + A2
2

2 )Y, bX =
A2
2 (2 + A2

2
2 ) ∈ Q[A]. Then, we obtain the Hermitian QE formula

Φ ∧ b1 < 0 ∧ bX < 0.

By using the script (1) ∈ N1 we compute the minimal HQF

H⟨G
I⟩

1 (1) =
(

2
)
, H⟨G

I⟩
X (1) =

(
− A2

2

)
.

We compute theirs characteristic polynomials

D
⟨GI⟩
1 (Y) = Y − 2, D⟨G

I⟩
X (Y) = Y +

A2

2
.

Let S(1,1) = S∩ (VC(0) \VC(−2))∩ (VC(0) \VC( A2
2 )). Then, we obtain S(1,1) = S. Therefore, we are

able to obtain the simple Hermitian QE formula Φ ∧ A2
2 < 0.

4 Conclusion
We have introduced minimal HQFs, and showed the Hermitian RRC theory with minimal HQFs
as the main theorem. As like Example 21, 22, we can obtain a Hermitian QE formula of (2) by
combining Theorem 15, Corollary 16 with Proposition 11. We may compute a partition such that

its cardinality is equal to
∑

1≤r≤d

(dCr)2t

at worst. So, we need to carefully choose each minimal parametric HQF, and carefully implement
the Hermitian QE with the concept of minimal HQFs. Moreover, there are some choices having a
little effect on simplification. When we choose not H⟨G

I⟩
1 (1) and H⟨G

I⟩
X (1) but one of the followings

in Example 21 at the first, the choices have a little effect on simplification:

H⟨G
I⟩

1 (2) and H⟨G
I⟩

X (2),

H⟨G
I⟩

1 (2) and H⟨G
I⟩

X (1), or

H⟨G
I⟩

1 (1) and H⟨G
I⟩

X (2)

For example, when we choose the first one, we obtain A , 0 ∧ −2A2 < 0 ∧ −2A3 < 0. That is, in
this paper, there are the following problems when we compute a Hermitian QE formula of (2) by
combining Theorem 15, Corollary 16 with Proposition 11.

• We may compute a partition such that its cardinality is equal to
∑

1≤r≤d(dCr)2t
at worst.

• There are some choices having a little effect on simplification.

The author try to solve the problems as future works. That is, the author try to obtain a solution
to has a partition such that its cardinality is less than

∑
1≤r≤d(dCr)2t

even at worst, and a solution to
has only some choices having a great effect on simplification.
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