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Abstract

This paper describes computations of the circumradius of cyclic polygons given by the lengths
of the sides. Extending the author’s previous paper in 2011, we mainly discuss the computation
and analysis of the formulae for cyclic heptagons and octagons. As a result of the present
work, we have succeeded in explicitly computing the circumradius of cyclic heptagons, which
is converted into an expression in the form of elementary symmetric polynomials for the first
time. We have also succeeded in computing 25 out of 39 coefficients in the circumradius
formula for cyclic octagons. Moreover, investigating the formulae by the total degree of each
term, from triangles to octagons, we have discovered a characteristic structure in common
among them, which should be helpful for computing the other huge coefficients remaining in
the octagon formula.

Key words: cyclic polygon, circumradius, resultant, elementary symmetric polynomial

1 Introduction
In this study, we consider a classic problem in Euclidean geometry for cyclic polygons; that is,
polygons inscribed in a circle. In particular, we focus on computing the circumradius R of cyclic
n-gons given by the lengths of sides a1, a2, . . . , an. In a previous paper [5], the author succeeded in
computing explicit formulae for the circumradii of cyclic hexagons and heptagons. However, the
algorithms used there were rather straightforward and inefficient from the present point of view.
Hence, the aim of this study encompasses the following problems related to circumradius formulae
for cyclic polygons:

(1) improvement of the computation algorithm for hexagons and heptagons,

(2) conversion of the heptagon formula into an expression in the form of elementary symmetric
polynomials,

∗This work was supported by a Grant-in-Aid for Scientific Research (25330006) from the Japan Society for the Promo-
tion of Science (JSPS).
†moritsug@slis.tsukuba.ac.jp
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(3) computation of the explicit formula for cyclic octagons,

(4) analysis of the formulae by an investigation in terms of total degrees.

Since Robbins [10] showed the “area formula (Heron polynomial)” for cyclic pentagons, sev-
eral authors have studied this problem of the area as described, for example, in the report by Pak
[8]. Pech [9] computed the actual form of the area of pentagons using a Gröbner basis technique,
and also discussed the circumradius of pentagons. The degree of generalized Heron polynomials
was proved by Fedorchuk and Pak [1], and the area formulae for cyclic heptagons and octagons
were given by Maley et al. [2]. Independently of these studies, Varfolomeev [12] has discussed the
area and the circumradius of cyclic polygons, but has never obtained an explicit formula for n > 5.

As a related work, the author derived an “integrated formula” for the relation of circumradius
R and area S for n = 5, 6 in [6], which is a correction and expansion of the result of Svrtan et al.
[11].

In contrast, this paper focuses on the “circumradius formulae” for cyclic polygons, which have
not been so closely investigated in the above papers. The reason might be that the computation of
circumradius formulae is very simply realized by resultants. If we already have fn(a1, . . . , an; R2)
as the circumradius formula for n-gons, with f3(a1, a2, a3; R2) as Heron’s formula for triangles, the
formula for (n + 1)-gons is computed inductively by the following equation using a diagonal d,
because these three polygons have a circumcircle in common:

fn+1(a1, . . . , an+1; R2) := Resd

(
fn(a1, . . . , an−1, d; R2), f3(d, an, an+1; R2)

)
/(R2)ℓ, (1)

where the number ℓ of redundant factor R2 depends on the case. If we could compute the elimi-
nation by resultant efficiently, this equation would be easily solved. However, the polynomials fn
for n ≥ 7 become so huge that we need much more consideration than for a straight computation.
Moreover, the polynomial fn+1 needs to be factored in some circumstances, so that proper factors
should be selected.

To the best of our knowledge, there exist no reports in which the circumradii for n ≥ 6 are
explicitly computed, other than the author’s previous paper [5]. In the present paper, we review the
computation for heptagons and attempt to compute the octagon formula. We note that some partial
results of this study have been already shown in a report by the author [7].

2 Previously known results for n = 3, 4, 5

2.1 Circumradius of a triangle (n = 3)
Firstly, we consider the circumradius R of a triangle with side lengths a1, a2, and a3. Every triangle
has a circumcircle, and its radius is given by the classical formula of Heron

R =
a1a2a3√

(a1 + a2 + a3)(−a1 + a2 + a3)(a1 − a2 + a3)(a1 + a2 − a3)
. (2)

It is straightforward to obtain the above relation using cosine and sine rules. Converting Eq. (2)
into a polynomial expression, we obtain(

a4
1 + a4

2 + a4
3 − 2(a2

1a2
2 + a2

2a2
3 + a2

3a2
1)
)

R2 + a2
1a2

2a2
3 = 0. (3)

In the following, letting y := R2, we consider the defining polynomial in y for each inscribed
polygon. From the above equation, we express the defining polynomial for a triangle as

Φ3(a1, a2, a3; y) :=
(
a4

1 + a4
2 + a4

3 − 2(a2
1a2

2 + a2
2a2

3 + a2
3a2

1)
)

y + a2
1a2

2a2
3. (4)
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We note that the leading coefficient is factored into
∏

(a1 ± a2 ± a3) as the product of all four
combinations. In order to express the formula in more compact form, using elementary symmetric
polynomials in a2

i , we rewrite the above result as

F3(s1, s2, s3; y) := (s2
1 − 4s2)y + s3, (5)

where s1 = a2
1 + a2

2 + a2
3, s2 = a2

1a2
2 + a2

2a2
3 + a2

3a2
1, and s3 = a2

1a2
2a2

3.
The aim of this study is to compute the similar polynomials Φn(ai; y) and Fn(si; y) for n ≥ 4

and clarify their characteristics. That is, for a given cyclic n-gon with the length of sides a1, . . . , an,
we compute the polynomial Φn(a1, . . . , an; R2) where all the possible circumradii R are contained
as its roots.

2.2 Circumradius of a cyclic quadrilateral (n = 4)
Secondly, we have the classic result of Brahmagupta for a “convex” cyclic quadrilateral:

R =

√
(a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3)

(−a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4)(a1 + a2 − a3 + a4)(a1 + a2 + a3 − a4)
. (6)

From its polynomial expression, we define the circumradius formula as

Φ
(+)
4 (ai; y) :=

(
(a4

1 + a4
2 + a4

3 + a4
4) − 2(a2

1a2
2 + a2

1a2
3 + a2

1a2
4 + a2

2a2
3 + a2

2a2
4 + a2

3a2
4) − 8a1a2a3a4

)
y

+ (a2
1a2

2a2
3 + a2

1a2
2a2

4 + a2
1a2

3a2
4 + a2

2a2
3a2

4) + (a2
1 + a2

2 + a2
3 + a2

4)a1a2a3a4.
(7)

Again, we note that the leading coefficient is factored into

4 terms∏ a1 +

4∑
j=2

(−1)k j a j

 k j ∈ {0, 1},
4∑

j=2

k j ≡ 1 (mod 2), (8)

which is the product of a1 ± a2 ± a3 ± a4 with even numbers of + sign.
Using elementary symmetric polynomials in a2

i , we rewrite the above result as

F(+)
4 (si; y) := (s2

1 − 4s2 − 8
√

s4)y + (s3 + s1
√

s4), (9)

where s1 = a2
1 + a2

2 + a2
3 + a2

4, s2 = a2
1a2

2 + · · ·, s3 = a2
1a2

2a2
3 + · · ·, and

√
s4 = a1a2a3a4, which is

used as an auxiliary to s4 = a2
1a2

2a2
3a2

4.
We should note that, letting a4 := −a4, we obtain another polynomial for “non-convex” quadri-

laterals:
Φ

(−)
4 (a1, a2, a3, a4; y) := Φ(+)

4 (a1, a2, a3,−a4; y). (10)

Its elementary symmetric polynomial expression is

F(−)
4 (si; y) := (s2

1 − 4s2 + 8
√

s4)y + (s3 − s1
√

s4), (11)

which is obtained by substituting
√

s4 := −√s4 in the polynomial F(+)
4 (si; y).
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2.3 Relation of the formulae for a triangle and a quadrilateral (n = 3, 4)
The polynomialsΦ(+)

4 (ai; y) andΦ(−)
4 (ai; y) are also computed fromΦ3(a1, a2, a3; y) by the following

elimination procedure. We divide a cyclic quadrilateral with side lengths {a1, a2, a3, a4} into two
triangles with sides {a1, a2, d} and {d, a3, a4} by a diagonal of length d. Since these two triangles
have a circumcircle in common, we will obtain the circumradius R of a quadrilateral by eliminating
the diagonal d.

In Eq. (4), d will appear with only even degrees in the Heron polynomial. Therefore, we
substitute D := d2 into it, and compute the resultant with D. Removing the redundant factor y2

from the resultant, we have the following relation by factorization:

ResD(Φ3(a1, a2,
√

D; y), Φ3(
√

D, a3, a4; y))/y2 = Φ
(+)
4 (ai; y) · Φ(−)

4 (ai; y). (12)

In the formulation later in this paper, we will also refer to the expanded form of the product on the
right-hand side:

Φ
(±)
4 (ai; y) := Φ

(+)
4 (ai; y) · Φ(−)

4 (ai; y)
= u2(a2

i )y2 + u1(a2
i )y + u0(a2

i ) (71 terms),
(13)

where each coefficient polynomial u j(a2
i ) has terms with only even degrees in ai’s.

Moreover, we should note that a good insight into the structure of the formulae is provided by
the introduction of an auxiliary expression

√
sn = a1 · · · an (for even n), as well as the notion of

crossing parity ε [10][2], where ε is 0 for a triangle, +1 for a convex quadrilateral, and −1 for a
non-convex quadrilateral. Under these notations, the circumradius formulae in y = R2 for n = 3, 4
in Eqs. (5), (9), and (11) are written in the following unified form:

F3,4(si; y) := (s2
1 − 4s2 − ε · 8

√
s4)y + (s3 + ε · s1

√
s4). (14)

2.4 Circumradius of a cyclic pentagon (n = 5)
We start by dividing a cyclic pentagon with side lengths {a1, . . . , a5} by a diagonal of length d, into
a cyclic quadrilateral of sides {a1, a2, a3, d} and a triangle of sides {d, a4, a5}, as shown in Fig. 1.

Since this quadrilateral and triangle have circumradius R in common, the cyclic pentagon for-
mula should be obtained if the diagonal d is eliminated from the formulae of Brahmagupta and
Heron. Specifically, we need to compute the following resultant:

Φ5(ai; y) := Resd(Φ(+)
4 (a1, a2, a3, d; y), Φ3(d, a4, a5; y))/y

= A7y7 + A6y6 + A5y5 + A4y4 + A3y3 + A2y2 + A1y + A0(
y = R2, Ai ∈ Z[a2

1, . . . , a
2
5]
)
.

(15)

We note that the leading coefficient and the constant term have the following forms:{
A7 =

∏
(a1 ± a2 ± a3 ± a4 ± a5) (all combinations, 16 terms),

A0 = a6
1a6

2a6
3a6

4a6
5.

(16)

This strategy was proposed by Japanese mathematicians in the 17th century. Katahiro Takebe
and Tomotoki Izeki showed, independently in 1683 and 1690, the details of the elimination pro-
cedures except for the final expanded expression [4]. Their results show that the circumradius
formula for cyclic pentagons has 2,922 terms with degree 7 in y = R2, which is equivalent to the
results obtained by modern computers [10][9].
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Fig. 1: Division of a cyclic pentagon by a diagonal d

We should note that the identical result is also obtained if we use Φ(−)
4 or Φ(±)

4 instead of Φ(+)
4 ;

that is, we have the following relations:

Φ5(ai; y) = Resd(Φ(−)
4 (a1, a2, a3, d; y), Φ3(d, a4, a5; y))/y

= ResD(Φ(±)
4 (a1, a2, a3,

√
D; y), Φ3(

√
D, a4, a5; y))/y,

(17)

where D = d2 is substituted in the latter case.
It should also be helpful to reduce the expression for the pentagon case, using the elementary

symmetric polynomials s1 = a2
1 + · · ·+ a2

5, . . ., s5 = a2
1 · · · a2

5. For an odd number n,
√

sn = a1 · · · an

does not appear in the formulae. As a result, Eq. (15) is rewritten into a simpler form:

F5(si; y) = Ã7y7 + Ã6y6 + · · · + Ã1y + Ã0 (81 terms), (18)

where Ãi ∈ Z[s1, . . . , s5]. In this equation, the leading coefficient and the constant term have the
following structures: Ã7 =

(
(s2

1 − 4s2)2 − 64s4

)2 − 2048s5(s3
1 − 4s1s2 + 8s3),

Ã0 = s3
5,

(19)

which correspond to Eq. (16).

3 Revision of the computation for hexagons (n = 6)

3.1 Robbins’ theorem and previous algorithm
The degrees of defining polynomials Φn(ai; y) were proved by Fedorchuk and Pak [1], after having
been first conjectured by Robbins [10]. In this study, we define the circumradius formula Φn(ai; y)
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for a cyclic n-gon as the polynomial factors with the following degree in y. Let

km :=
2m + 1

2

(
2m
m

)
− 22m−1 =

m−1∑
j=0

(m − j)
(

2m + 1
j

)
; (20)

that is, let ki := 1, 7, 38, 187, 874, . . . (i = 1, 2, 3, 4, . . .). Then,

• the degree in y of Φ2m+1(ai; y) is km, and

• the degree in y of Φ(±)
2m+2(ai; y) is 2km, where Φ(±)

2m+2 is factored into the product of two polyno-
mials, Φ(+)

2m+2 and Φ(−)
2m+2, with each degree km.

We should note that Φ2m+1(ai; y) and Φ(±)
2m+2(ai; y) are polynomials only in a2

i ’s.
In our previous paper [5], we computed the case of a cyclic hexagon (m = 2), dividing it into

a pentagon and a triangle with diagonal d. Computing the resultant with D(= d2), we obtained a
polynomial with degree 14 and 497,417 terms as an explicit form:{

Φ
(±)
6 (a1, . . . , a6; y) := ResD(Φ5(a1, a2, a3, a4,

√
D; y),Φ3(

√
D, a5, a6; y))/y8

= B̂14y14 + · · · + B̂1y + B̂0 (B̂i ∈ Z[a1, . . . a6]).
(21)

Next, we factorized Φ(±)
6 (ai; x), and obtained

Φ
(±)
6 (ai; y) = Φ(+)

6 (ai; y) · Φ(−)
6 (ai; y) (degyΦ

(+)
6 = degyΦ

(−)
6 = 7), (22)

where both Φ(+)
6 and Φ(−)

6 have 19,449 terms. We should note that this factorization still needs
several hours of CPU time, and might be a bottleneck in these procedures.

3.2 Revised algorithm for the circumradius of a cyclic hexagon
The result described above strongly suggests that we should avoid the factorization of large poly-
nomials such as Φ(±)

6 (ai; y). In the new formulation, we divide a cyclic hexagon into two (con-
vex) quadrilaterals, and directly compute the defining polynomial for the circumradius of a convex
hexagon as an expanded form:

Φ
(+)
6 (ai; y) := Resd(Φ(+)

4 (a1, a2, a3, d; y), Φ(+)
4 (d, a4, a5, a6; y))/y

= B7y7 + B6y6 + · · · + B1y + B0 (19,449 terms, approx. 580KB)(
y = R2, Bi ∈ Z[a1, . . . , a6]

)
.

(23)

Since the polynomial Φ(+)
4 (ai; y) contains terms with odd degrees in ai’s, the above resultant should

be computed with respect to d itself. We have confirmed that the leading coefficient of Φ(+)
6 (ai; y)

has the following form:

B7 =

16 terms∏ a1 +

6∑
j=2

(−1)k j a j

 k j ∈ {0, 1},
6∑

j=2

k j ≡ 1 (mod 2), (24)

which is the product of a1 ± · · · ± a6 with even numbers of + sign.
By avoiding factorization requiring several hours of CPU time, the computation of Eq. (23) can

be executed in less than one second, which is a drastic improvement on the result reported in our
previous paper [5].
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The counterpart of Φ(+)
6 (ai; y) for hexagons of the other group without a convex one is obtained

by simple substitution from Robbins’ theorem:

Φ
(−)
6 (a1, . . . , a5, a6; y) := Φ(+)

6 (a1, . . . , a5,−a6; y). (25)

In the formulation later in this paper, we will also refer to the expanded form of polynomial
Φ

(±)
6 (ai; y) = Φ(+)

6 (ai; y) · Φ(−)
6 (ai; y) in Eq. (22), which has terms with only even degrees in ai’s.

As the next step, using the elementary symmetric polynomials s1 = a2
1 + · · · + a2

6, . . ., s5 =

a2
1a2

2a2
3a2

4a2
5 + · · · ,

√
s6 = a1 · · · a6, we rewrite Eq. (23) into a simpler form by the algorithm

described later in Subsection 4.2:

F(+)
6 (si; y) := B̃7y7 + B̃6y6 + · · · + B̃1y + B̃0 (224 terms), (26)

where B̃i ∈ Z[s1, . . . , s5,
√

s6]. Compared with Eq. (19), the leading coefficient and the constant
term have the following forms:

B̃7 = Ã7 + (−384s5
1 + 3072s3

1s2 − 4096s2
1s3 − 6144s1s2

2 − 8192s1s4

+ 16384s2s3 + 32768s5)
√

s6 + (12288s2
1 − 32768s2)

√
s6

2,

B̃0 = Ã0 − s2s2
5
√

s6 + (s1s3s5 − 4s4s5)
√

s6
2 + (−s2

1s4 + 2s1s5 + 4s2s4 − s2
3)
√

s6
3

+ (s3
1 − 4s1s2 + 4s3)

√
s6

4 − 4
√

s6
5.

(27)

Its counterpart is simply computed by substitution:

F(−)
6 (s1, . . . , s5,

√
s6; y) := F(+)

6 (s1, . . . , s5,−
√

s6; y). (28)

Since we have also the relation

F5(s1, . . . , s5; y) = F(+)
6 (s1, . . . , s5, 0; y), (29)

we can express F5, F(+)
6 , and F(−)

6 uniformly as polynomial F5,6(s1, . . . , s5, ε
√

s6; y) similarly to Eq.
(14), using the crossing parity ε. The term ε

√
s6 means that ε is 0 for pentagons, +1 for hexagons

that include a convex one, and −1 for the other group of hexagons. This completes the computation
for the circumradii of cyclic pentagons and hexagons.

4 Revision of the computation for heptagons (n = 7)

4.1 Comparison of the division of cyclic heptagons
In our previous paper [5], the essential computation consisted of the following resultant:

Φ7(ai; y) := ResD(Φ(±)
6 (a1, a2, a3, a4, a5,

√
D; y), Φ3(

√
D, a6, a7; y))/y6, (30)

which means that a cyclic heptagon is divided into a hexagon and a triangle with a common cir-
cumcircle. However, there could be several ways to compute the resultant for cyclic heptagons
other than Eq. (30). After comparative experiments, we have concluded that the following method
of resultant computation seems to be quite practical from the viewpoint of CPU time and mem-
ory consumption. In this formulation, we divide a cyclic heptagon into a pentagon and a convex
quadrilateral by another diagonal d, and compute the resultant into the expanded form:

Φ7(ai; y) := Resd(Φ5(a1, a2, a3, a4, d; y), Φ(+)
4 (d, a5, a6, a7; y))/y6

= C38y38 + · · · +C1y +C0 (337,550,051 terms, approx. 7,407MB)(
y = R2, Ci ∈ Z[a2

1, . . . , a
2
7]
)
.

(31)
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We have observed that the leading coefficient and the constant term have the following forms:{
C38 =

∏
(a1 ± a2 ± a3 ± a4 ± a5 ± a6 ± a7) (all combinations, 64 terms),

C0 = a20
1 a20

2 a20
3 a20

4 a20
5 a20

6 a20
7 .

(32)

It seems difficult to compute the above resultant in Eq. (31) straightforwardly because of the size
of polynomial Φ5. Hence, we divide the computation steps as follows.

Firstly, we collect the coefficients of the two polynomials in d as a preprocessing for the con-
struction of Sylvester matrix:{
Φ5(a1, a2, a3, a4, d; y) = y7d16 + u14d14 + · · · + u2d2 + u0 (u j ∈ Z[a1, a2, a3, a4, y]),
Φ

(+)
4 (d, a5, a6, a7; y) = yd4 + a5a6a7d3 + ( · · · )d2 + ( · · · )d + ( · · · ) (19 terms),

(33)
where Φ5 originally has 2,922 terms (with only even degrees in d).

Secondly, we compute the resultant of these polynomials, regarding u0, . . . , u14 as independent
new variables, that is, Φ5 as a polynomial with only 9 terms. It is a conventional programming
technique in computer algebra to replace large subexpressions with new symbols temporally. Then,
we obtain the intermediate form of the resultant polynomial:

R(u0, u2, . . . , u14, a5, a6, a7; y) := Resd(Φ5,Φ
(+)
4 ). (34)

Thirdly, we substitute the original coefficient u j(a1, a2, a3, a4, y) in Φ5 into each u j, and obtain
the following polynomial:

R̄(a1, . . . , a7; y) = C̄38y44 + · · · + C̄0y6, (35)

where C̄i’s are not yet expanded, because the Maple computer algebra system does not simplify
them automatically.

Finally, if we succeed in expanding each coefficient C̄i into the simplified form Ci, we obtain
the explicit circumradius formula Φ7(ai; y) in Eq. (31). This expansion step needs large memory
allocation and often fails, and the job of computing Ci’s should be divided into several parts of
appropriate sizes.

Using the same division of heptagons as in Eq. (31), we could also compute the following
resultant, as a third method:

Φ7(ai; y) := ResD(Φ5(a1, a2, a3, a4,
√

D; y), Φ(±)
4 (
√

D, a5, a6, a7; y))/y6. (36)

Since we have D = d2, the resultant with D will give rise to a Sylvester matrix half the size of that
with d. Hence, more efficient computation may be expected.

Otherwise, as a fourth method, if we divide a cyclic heptagon into a hexagon and a triangle
similarly to Eq. (30), we can also express the formula by the following resultant:

Φ7(ai; y) := Resd(Φ(+)
6 (a1, a2, a3, a4, a5, d; y), Φ3(d, a6, a7; y))/y6, (37)

where Φ(+)
6 has 19,449 terms and might decrease the efficiency of computation.

Since it is almost impossible to find the optimal way to compute Φ7(ai; y) in advance, we tried
all of these four types of formulations of the resultant. In the process of resultant computation,
devices similar to those used in Eqs. (33), (34), and (35) are indispensable. We used the Maple
2016 computer algebra system in two environments:

Machine A Windows, Xeon (8 core, 2.93 GHz) × 2, 192 GB RAM,
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Machine B Linux, Xeon (8 core, 2.6 GHz) × 2, 256 GB RAM.

A summary of the CPU times is shown in Table 1. The times include garbage collection;
hence, if the memory allocation approaches the hardware limit, the efficiency of computation will
be greatly lowered. Among these four methods, those of Eqs. (31) and (36), division into a pen-
tagon and a quadrilateral, are relatively efficient. In contrast, it can be seen that those of Eqs. (30)
and (37), division into a hexagon and a triangle, should be avoided. This finding represents a con-
siderable improvement over that reported in our previous paper [5], where Eq. (30) was applied.

Resultant Machine A Machine B
Eq. (30) 62,211 67,087
Eq. (31) †24,941 28,489
Eq. (36) †25,365 27,978
Eq. (37) ‡238,183 ††171,980

†: Job was divided into 4 parts.
‡: Job was divided into 7 parts.
††: Job was divided into 2 parts.

Table 1: CPU times (sec) using Maple 2016 for computing Φ7(ai; y)

4.2 Conversion into an expression in the form of elementary symmetric poly-
nomials

Since the coefficients in the circumradius formula for a cyclic heptagon are also symmetric with
those of a2

i , the size of the formula can be reduced if the coefficients are expressed by elementary
symmetric polynomials.

The conversion has been processed by the following conventional algorithm so far. First, we
consider the polynomial ideal with elementary symmetric polynomials of n-th order:

I =
{
s1 − (a2

1 + · · · + a2
n), . . . , sn−1 − (a2

1 · · · a2
n−1 + · · ·), sn − (a2

1 · · · a2
n)
}
. (38)

When the number n is even, we replace the last element sn with
√

sn:

I′ =
{
s1 − (a2

1 + · · · + a2
n), . . . , sn−1 − (a2

1 · · · a2
n−1 + · · ·), s′n − (a1 · · · an)

}
. (39)

With a group ordering (“lexdeg” in the Maple computer algebra system), computing the Gröbner
basis of I or I′ using Maple built-in function “Basis”, we obtain

G := Basis(I, {a1, . . . , an} ≻ {s1, . . . , sn}). (40)

Next, computing p := NormalForm( f ,G) for a symmetric polynomial f using Maple function
“NormalForm”, we obtain the expression p in the form of elementary symmetric polynomials.
This algorithm has been effective for polynomials with up to 6 variables, and we have succeeded
in computing F(+)

6 (si; y) in Eq. (26).
However, in the case of 7 variables, this naïve algorithm becomes inefficient and cannot be

used. For example, the constant term C0 = a20
1 · · · a20

7 in Φ7(ai; y) has never been reduced to s10
7 by

the “NormalForm” function.
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This feature means that we should explicitly program the procedure of reduction by elementary
symmetric polynomials for n ≥ 7. Therefore, we have constructed the algorithm as follows.

First, we replace bi := a2
i for simplicity, and consider the ideal

I = {s1 − (b1 + · · · + b7), . . . , s6 − (b1 · · · b6 + · · ·), s7 − (b1 · · · b7)} . (41)

We compute the Gröbner basis of ideal I with a purely lexicographic order b1 ≻ · · · ≻ b7 ≻ s1 ≻
· · · ≻ s7. Then, we obtain the Gröbner basis G = {g1, . . . , g7} with a certain type of structured form,
which consists of the following polynomials:

g1 = b1 + (b2 + · · · + b7 − s1),
g2 = b2

2 + h2(b2, b3, . . . , b7, s1, s2),
· · ·

g6 = b6
6 + h6(b6, b7, s1, . . . , s6),

g7 = b7
7 − s1b6

7 + s2b5
7 − s3b4

7 + s4b3
7 − s5b2

7 + s6b7 − s7,

(42)

where hi(bi, . . . , b7, s1, . . . , si) ∈ Z[bi, . . . , b7, s1, . . . , si] (2 ≤ i ≤ 6).
Since each head term of gi is b1, b2

2, . . . , b
7
7 respectively, we reduce the symmetric polynomial

f using gi’s in this order. Using the “Rem” polynomial remainder function in Maple, we compute
the remainder with b1, b2, . . . , b7 sequentially as follows:

r1 := Rem( f , g1; b1),
r2 := Rem(r1, g2; b2),
· · ·

r6 := Rem(r5, g6; b6),
p := Rem(r6, g7; b7).

(43)

As a result, the variables b1, . . . , b7 are eliminated from f in this order, and we obtain the expression
with s1, . . . , s7 only. Applying the above procedure, we have succeeded in convertingΦ7(ai; y) into

F7(si; y) = C̃38y38 + · · · + C̃1y + C̃0 (199,695 terms), (44)

where we have C̃i ∈ Z[s1, . . . , s7], with 78,503 seconds of CPU time on Machine A (described
in Subsection 4.1). To the best of our knowledge, this polynomial F7(si; y) has not been shown
elsewhere. Hence, this result represents a significant improvement to that in our previous paper [5],
where only Φ7(ai; y) with 337,550,051 terms was obtained.

For reference, the area formula (n = 7) reported by Maley et al. [2] has the following form:

Ψ̃7(si; x) = x38 + M̃37x37 + · · · + M̃1x + M̃0 (955,641 terms), (45)

where x = (4S )2 and M̃i ∈ Z[s1, . . . , s7]. They constructed the formula using elementary sym-
metric polynomials from the beginning, and their study does not contain a conversion procedure as
described above.

5 Attempt at computation for an octagon (n = 8)

5.1 Algorithm and current results
We have several ways of dividing a cyclic octagon for computation of the circumradius formula.
Dividing an octagon into a heptagon and a triangle, and substituting D = d2, we have the following
relation by resultant:

Φ
(±)
8 (ai; y) := ResD(Φ7(a1, a2, a3, a4, a5, a6,

√
D; y), Φ3(

√
D, a7, a8; y))/y32. (46)
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deg in y #terms of Φ(+)
8 t-deg #terms of F(+)

8 deg in
√

s8

0 5,554,128 70 918 16
1 13,298,304 69 1,870 16
2 26,940,233 68 3,432 16
3 48,012,824 67 5,732 16
4 77,750,132 66 8,931 16
5 114,947,440 65 12,670 16
6 158,302,913 64 17,129 16
7 204,390,480 63 21,592 15
8 250,654,676 62 26,179 15
9 293,931,056 61 30,200 15

10 333,471,187 60 33,748 15
11 367,872,280 59 36,404 14
12 393,876,280 58 38,662 14
13 410,700,024 57 40,052 14

28 126,825,848 42 17,976 10
29 109,294,704 41 16,183 10
30 93,610,141 40 14,513 10
31 79,699,496 39 12,910 9
32 67,463,040 38 11,436 9
33 56,784,240 37 10,026 9
34 47,533,327 36 8,743 9
35 39,574,496 35 7,514 8
36 32,771,272 34 6,385 8
37 26,990,336 33 5,260 8
38 22,105,457 32 4,231 8

Table 2: Each coefficient in the octagon formulae Φ(+)
8 (ai; y) and F(+)

8 (si; y)

Alternatively, if we divide an octagon into two pentagons, we have a similar relation:

Φ
(±)
8 (ai, y) := ResD(Φ5(a1, a2, a3, a4,

√
D; y), Φ5(

√
D, a5, a6, a7, a8; y))/y36. (47)

Since the degree in y of Φ(±)
8 (ai; y) is 76, it is quite difficult to compute these resultants in Eqs. (46)

and (47). Moreover, this polynomial should be factorized as follows:

Φ
(±)
8 (ai; y) = Φ(+)

8 (ai; y) · Φ(−)
8 (ai; y) (degyΦ

(+)
8 = degyΦ

(−)
8 = 38), (48)

which seems almost impractical. In order to avoid factorization, we should divide an octagon into
a (convex) hexagon and a (convex) quadrilateral, and directly compute the following resultant with
degree 38 in y:

Φ
(+)
8 (ai; y) := Resd(Φ(+)

6 (a1, a2, a3, a4, a5, d; y), Φ(+)
4 (d, a6, a7, a8; y))/y6. (49)

Similarly to Eq. (31), we compute this stepwise.
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Firstly, we collect the coefficients of the two polynomials in d:
Φ

(+)
6 (a1, a2, a3, a4, a5, d; y) = y7d16 − a1a2a3a4a5y5d15 + u14d14 + · · · + u1d + u0

(u j ∈ Z[a1, . . . , a5, y]),
Φ

(+)
4 (d, a6, a7, a8; y) = yd4 + a6a7a8d3 + ( · · · )d2 + ( · · · )d + ( · · · ) (19 terms),

(50)
where Φ(+)

6 originally has 19,449 terms.
Secondly, we compute the resultant of these polynomials, regarding u0, . . . , u14 as independent

new variables. Then, we obtain the intermediate form of the resultant polynomial:

R(u0, u1, . . . , u14, a1, . . . , a8; y) := Resd(Φ(+)
6 ,Φ

(+)
4 ). (51)

Thirdly, we substitute the original coefficient u j(a1, . . . , a5, y) in Φ(+)
6 into each u j, and obtain the

following polynomial:
R̄(a1, . . . , a8; y) = P̄38y44 + · · · + P̄0y6. (52)

At this point, the P̄i’s have not yet been expanded or simplified and it is difficult to observe their
explicit expressions. Finally, if we succeed in expanding each coefficient P̄i, we obtain the circum-
radius formula Φ(+)

8 (ai; y) in Eq. (49). The current status of computation is expressed as follows:

Φ
(+)
8 (ai; y) = P38y38 + · · · + P28y28 +

(
P̄27y27 + · · · + P̄14y14

)
+ P13y13 + · · · + P0, (53)

where coefficients P27, . . . , P14 with much larger sizes have not yet been obtained in expanded
form. A summary of the number of terms is shown in Table 2, and the degrees of each coefficient
will be discussed later.

The expansion of each coefficient P̄i needs a large memory allocation and often fails. For ex-
ample, the size of coefficient P13 is approximately 8,644MB in Maple file format (*.m), which is
the largest one obtained so far. In order to avoid memory overflow, we need to divide the proce-
dure into a number of smaller problems, which requires much more CPU time. For example, the
expansion of P̄28 took 371 days of CPU time in total (with 182 jobs, on Machine B described in
Subsection 4.1), which is the longest computation executed so far, even though its size is approxi-
mately 2,673MB. Although we are considering the specification of data structures in Maple [3], it
is unlikely that the remaining computations will be completed in the near future.

Nevertheless, some properties of the octagon formula have been elucidated at this point. We
have, for example, succeeded in expanding the leading coefficient and obtained the structure

P38 =

64 terms∏ a1 +

8∑
j=2

(−1)k j a j

 k j ∈ {0, 1},
8∑

j=2

k j ≡ 1 (mod 2), (54)

which is the product of a1 ± a2 ± · · · ± a8 with even numbers of + sign.
When we obtain the coefficient Pi in expanded form, it should be converted into an expression

in the form of elementary symmetric polynomials. First, we substitute a1 · · · a8 =
√

s8 in each
coefficient Pi, and rewrite it as a polynomial form in

√
s8:

Pi = h0(a2
1, . . . , a

2
8) + h1(a2

1, . . . , a
2
8)
√

s8 + · · · + hℓi (a
2
1, . . . , a

2
8)
√

s8
ℓi . (55)

In this expression, each coefficient h j(a2
1, . . . , a

2
8) is a symmetric polynomial in a2

1, . . . , a
2
8 again.

Hence, we convert each coefficient using the recurrence relation for elementary symmetric polyno-
mials, which is detailed in the next subsection. At present, we have obtained the coefficients in the
form of elementary symmetric polynomials except P̃27, . . . , P̃14, as follows:

F(+)
8 (si; y) = P̃38y38 + · · · + P̃28y28 +

(
P̄27y27 + · · · + P̄14y14

)
+ P̃13y13 + · · · + P̃0. (56)
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For example, the constant term is expressed as

P̃0 = s10
7 + s3s9

7
√

s8 + · · · + (3s6
1 − 8s4

1s2)
√

s8
16 (918 terms), (57)

where s10
7 = C̃0 in Eq. (44).

Since we have not completed expanding P̄i (27 ≥ i ≥ 14), their expressions in the form of
elementary symmetric polynomials P̃i (27 ≥ i ≥ 14) have not yet been obtained.

5.2 Recurrence relation for elementary symmetric polynomials
In this subsection, we consider another algorithm for converting symmetric polynomials h j(a2

1, . . . ,
a2

8) in Eq. (55). A memory overflow was caused when the reduction procedure discussed earlier in
the relation to Eqs. (42) and (43) was applied to the case of 8 variables. Hence, we tried to use a
classical recurrence relation as follows, and to reduce the size of the problems.

Let sk be the kth elementary symmetric polynomial with x1, . . . , xn, and let tk be the kth ele-
mentary symmetric polynomial with x2, . . . , xn. Then, we have the following relations:

s1 = x1 + t1,
s2 = t1x1 + t2,
· · · · · · · · ·
sn−1 = tn−2x1 + tn−1,
sn = tn−1x1.

(58)

If we solve the ith equation with ti, and substitute it into the next equation for i = 1, . . . , n − 1
repeatedly, we obtain the following relations:

t1 = s1 − x1,
t2 = s2 − t1x1 = s2 − s1x1 + x2

1,
· · · · · · · · ·
tn−1 = sn−1 − tn−2x1 = sn−1 − · · · + (−1)n−1xn−1

1 ,

(59)

which means that t1, . . . , tn−1 are expressed as polynomials in x1, s1, . . . , sn−1. Finally, substituting
into the nth line in Eq. (58), we obtain the polynomial relation:

g(x1) = (−1)n−1xn
1 + · · · + sn−1x1 − sn = 0. (60)

Using these relations, expressions in the form of elementary symmetric polynomials with n
variables are computed by the following procedure.

Firstly, we order the given symmetric expression with n variables into the polynomial in x1:

f (x1, . . . , xn) = aℓ(x2, . . . , xn)xℓ1 + · · · + a1(x2, . . . , xn)x1 + a0(x2, . . . , xn), (61)

where each coefficient a j(x2, . . . , xn) is symmetric in x2, . . . , xn.
Secondly, applying Eqs. (42) and (43) to the n − 1 variable case, we convert a j(x2, . . . , xn) into

the expression by tk:

f ′(x1, t1, . . . , tn−1) = a′ℓ(t1, . . . , tn−1)xℓ1 + · · · + a′1(t1, . . . , tn−1)x1 + a′0(t1, . . . , tn−1). (62)

This process means that one problem with n variables is divided into ℓ problems with n−1 variables.
Thirdly, applying Eq. (59) to Eq. (62), we express tk by x1, s1, . . . , sk, and reorder it with x1:

f ′′(x1, s1, . . . , sn−1) = a′′m(s1, . . . , sn−1)xm
1 + · · · + a′′1 (s1, . . . , sn−1)x1 + a′′0 (s1, . . . , sn−1). (63)
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Finally, using Eq. (60), we compute the remainder of f ′′ by g(x1) with x1. As a result, the vari-
able x1 is completely eliminated and we obtain the expression in the form of elementary symmetric
polynomials as f̃ (s1, . . . , sn).

When we tried to apply this procedure to the computation of Eq. (44) with 7 variables, the com-
putation time was not necessarily reduced, even though memory consumption could be suppressed.
However, for the case with 8 variables in Eq. (55), the above procedure with a recurrence relation
was found to be indispensable to avoid memory overflow.

5.3 Confirmation of the results for octagons
At present, we have succeeded in computing the coefficients Pi and P̃i (i = 0, . . . , 13, 28, . . . , 38)
in Eqs. (53) and (56). We have confirmed their correctness in the following two ways:

Check (1) We assumed that the heptagon formulae in Eqs. (31) and (44) were correctly computed.
Then, we substituted a8 := 0 or

√
s8 := 0 into Pi and P̃i, and compared them with coefficients

Ci and C̃i in the heptagon formulae. For the coefficients Pi and P̃i obtained so far, all of the
values were confirmed to be identical.

Check (2) The resultant in Eq. (49) is easily computed under the substitution a j := p j, where p j’s
are randomly chosen prime numbers. Then, we compared these values with the coefficients Pi

in Φ(+)
8 (p j; y) under the substitution a j := p j, and confirmed that they were identical.

Since the expression P̃i in the form of elementary symmetric polynomials is successfully com-
puted from Pi, we may conclude that Pi is truly a symmetric polynomial. Adding the above checks
to this result, we believe that the octagon formula, computed so far, is surely the correct expansion
of the heptagon formula.

6 Analysis of the forms of circumradius formulae

deg in y #terms in Φ(+)
4 t-deg #terms in F(+)

4 deg in
√

s4

0 8 3 2 1
1 11 2 3 1

Table 3: Each coefficient in the quadrilateral formulae Φ(+)
4 (ai; y) and F(+)

4 (si; y)

In this section, we investigate the shapes of circumradius formulae by focusing on the degrees
in each coefficient. First, we introduce the notion of the total degree of a power product in a2

i ’s.

Definition 1
We define the total degree of a power product in a2

i ’s as follows:

t-deg
(
a2m1

1 a2m2
2 · · · a2mn

n

)
:= m1 + m2 + · · · + mn. (64)
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Under this definition, elementary symmetric polynomials with n variables have the following struc-
tures composed of homogeneous power products:

s1 = a2
1 + · · · + a2

n is homogeneous with t-deg 1,
s2 = a2

1a2
2 + · · · is homogeneous with t-deg 2,

· · · · · ·
sn−1 = a2

1a2
2 · · · a2

n−1 + · · · is homogeneous with t-deg n − 1,
sn = a2

1a2
2 · · · a2

n has t-deg n.

(65)

Adding to the above, only for the case of even number n, we define t-deg(
√

sn) = n/2, where√
sn = a1a2 · · · an.We also note that the total degree in elementary symmetric polynomials is given

by
t-deg

(
sm1

1 sm2
2 · · · s

mn
n

)
= m1 + 2m2 + · · · + nmn. (66)

First, we investigate the triangle formula Φ3(a1, a2, a3; y) in Eq. (4).

• The constant term has the form a2
1a2

2a2
3 with t-deg 3.

• The coefficient of y(= R2) is a4
1 + a4

2 + a4
3 − 2(a2

1a2
2 + a2

2a2
3 + a2

3a2
1) and it is homogeneous with

t-deg 2.

These relations are also observed in the expression F3(s1, s2, s3; y) in the form of elementary sym-
metric polynomials in Eq. (5), where we have t-deg(s3) = 3 and t-deg(s2

1 − 4s2) = 2.
Similarly, we analyze the quadrilateral formulae Φ(+)

4 (ai; y) and F(+)
4 (si; y) in Eqs. (7) and (9),

noting that t-deg(
√

s4) = t-deg(a1a2a3a4) = 2. The number of terms and the total degrees are
shown in Table 3. From these results, it can be seen that the triangle formula is a part of the
quadrilateral formula as shown in Eq. (14).

deg in y #terms in Φ(+)
6 t-deg #terms in F(+)

6 deg in
√

s6

0 533 15 12 5
1 1,632 14 23 4
2 2,688 13 33 4
3 3,597 12 37 4
4 3,888 11 36 3
5 3,234 10 33 3
6 2,338 9 29 3
7 1,539 8 21 2

Table 4: Each coefficient in the hexagon formulae Φ(+)
6 (ai; y) and F(+)

6 (si; y)

Next, we investigate the hexagon formulae Φ(+)
6 (ai; y) and F(+)

6 (si; y) in Eqs. (23) and (26),
noting that t-deg(

√
s6) = t-deg(a1 · · · a6) = 3. The number of terms and the total degrees are shown

in Table 4, and it is naturally confirmed by the observation that the pentagon formulae Φ5(ai; y)
and F5(si; y) in Eqs. (15) and (18) have the same distribution of total degrees.

Finally, we analyze the octagon formulae Φ(+)
8 (ai; y) and F(+)

8 (ai; y) in Eqs. (53) and (56), al-
though it should be noted that this attempt is still ongoing. As discussed earlier, we have completed
the computations Pi and P̃i for i = 0, . . . , 13 and i = 28, . . . , 38. The number of terms and the total
degrees of these coefficients are shown in Table 2.
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Since the distribution of degrees is quite regular, it seems possible to readily estimate the forms
of P̃i (i = 14, . . . , 27), the expanded forms of which we have not yet obtained. For example, P̃20
should have t-deg 50 and degree 12 in

√
s8. Therefore, it should have the following form:

P̃20 = u0(s1, . . . , s7) + u1(s1, . . . , s7)
√

s8 + · · · + u12(s1, . . . , s7)
√

s8
12, (67)

where u j is homogeneous with t-deg(u j) = 50 − 4 j ( j = 0, . . . , 12). In particular, u0(s1, . . . , s7)
should be identical with coefficient C̃20 of the heptagon formula F7(si; y) in Eq. (44).

7 Concluding remarks
In this study, we have shown continued progress in the computation of circumradius formulae for
cyclic polygons since our previous paper [5] as follows.

(1) The computation algorithms for cyclic hexagons and heptagons have been significantly im-
proved.

(2) The circumradius formula for heptagons has been converted into an expression in the form of
elementary symmetric polynomials for the first time.

(3) The current status of computation for the octagon formula is shown, and 25 out of 39 coeffi-
cients have been explicitly obtained so far. However, it might be quite difficult to expand the
remaining polynomials P̃i (i = 14, . . . , 27) because of their size.

(4) The common structure of the circumradius formulae has been investigated by the distribution
of total degrees.

Although the computations for the octagon formula have not yet been completed, we believe that
significant knowledge in a unified form has been obtained for the circumradii of cyclic n-gons
(n = 3, . . . , 8). As a result, it has become possible to predict the structure of each coefficient, such
as Eq. (67) in the octagon formula. Using this knowledge, it is expected that another approach such
as a numerical interpolation algorithm will be able to be applied to this problem in the future.
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Abstract

Hermitian quadratic forms play a key role in a real roots counting theory for zero-dimensional
ideals. A method based on the theory has a great effect on quantifier elimination of first order
formulas containing many equalities. Its essential part eliminates a block of quantifiers by the
parametric Hermitian quadratic forms of the parametric zero-dimensional ideal generated by
the equalities and the parametric polynomials constructing the inequalities of the given first
order formula. When the parametric ideal is non-radical, the Hermitian quadratic forms are
unnecessarily complicated, which produce a complicated quantifier-free formula. We may ob-
tain a simple quantifier-free formula by the Hermitian quadratic forms of the radical. However,
the computational complexity of parametric radical is high even in zero-dimensional cases. In
the paper, to simplify quantifier-free formulas produced by the quantifier elimination method,
we introduce minimal Hermitian quadratic forms which are applied to the theory.

1 Introduction
The concept of Hermitian Quadratic Forms (HQFs) plays a key role in a Real Roots Counting
(RRC) theory for univariate polynomials. Independently in [1, 10], the RRC theory was extended
to zero-dimensional ideals of multivariate polynomial rings by using the theory of Gröbner Bases
(GBs). In the paper, the RRC theory is called “the Hermitian RRC theory”. A Quantifier Elimi-
nation (QE) method based on the Hermitian RRC theory has a great effect on QE of First Order
Formulas (FOFs) which contain many equalities. In the paper, the QE method introduced in [13]
and improved in [2, 3, 4, 5] is called “the Hermitian QE method”. In the Hermitian QE method,
parametric HQFs play an important role to produce quantifier-free formulas (QFFs). In the pa-
per, such QFFs are called “Hermitian QE formulas”. In the section, to describe the outline of the
essential part of the Hermitian QE method, we introduce Ā = A1, . . . , Am as free variables and
X̄ = X1, . . . , Xn as quantified variables. Let φ be a QFF consisting only of polynomial equalities
and disequalities (= and ,) of Q[Ā]. The essential part of the Hermitian QE method is the algo-
rithm which computes a Hermitian QE formula from the given FOF having the following form for
polynomials f1, . . . , fs, p1, . . . , pt ∈ Q[Ā, X̄]:

φ(Ā) ∧ ∃X̄ ∈ Rn ( f1(Ā, X̄) = 0 ∧ . . . ∧ fs(Ā, X̄) = 0 ∧ p1(Ā, X̄) > 0 ∧ . . . ∧ pt(Ā, X̄) > 0), (1)
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where f1, . . . , fs and p1, . . . , pt satisfy the following property 1 for Pφ = {ā ∈ Cm : φ(ā)}:

1. I(ā, X̄) = ⟨ f1(ā, X̄), . . . , fs(ā, X̄)⟩ is a zero-dimensional ideal of C[X̄] for any ā ∈ Pφ.

In the paper, we improve the algorithm introduced in [3] and implemented with several techniques
of [4]. Given an admissible term order ≻ on terms consisting of X̄, it produces a disjunction
equivalent to (1). The disjunction consists of finitely many FOFs such as the following form:

Φ(Ā) ∧ ∃X̄ ∈ Rn (
∧
g∈G

g(Ā, X̄) = 0 ∧ p1(Ā, X̄) > 0 ∧ . . . ∧ pt(Ā, X̄) > 0), (2)

where Φ is a QFF satisfying the following property 2, and G is a finite subset of Q[Ā, X̄] satisfying
the following properties 3 and 4 for the product p =

∏t
i=1 pi and SΦ = {ā ∈ Cm : Φ(ā)}:

2. Φ consists only of polynomial equalities and disequalities of Q[Ā], and satisfies SΦ ⊂ Pφ.

3. {g(ā, X̄) : g ∈ G} is a GB of the saturation I′(ā, X̄) = I(ā, X̄) : p(ā, X̄)∞ for any ā ∈ SΦ.

4. Each g ∈ G satisfies lg(ā) , 0 for the leading coefficient lg = LC(g) ∈ Q[Ā] and any ā ∈ SΦ.

The disjunction is produced by a Comprehensive Gröbner System (CGS) of the parametric satura-
tion ideal ⟨ f1, . . . , fs⟩ : p∞ on Pφ w.r.t. ≻ considering Ā as parameters (See Definition 6 - Remark
8). The concept of CGSs was introduced in [12] as a powerful tool for parametric ideals. We
consider it as a system of parametric GBs. With a series of resent results of [6, 7, 8, 9, 11], we
now have efficient CGS computation algorithms. Moreover, as a result of [5], we can efficiently
compute CGSs of parametric zero-dimensional saturation.

Let pe =
∏t

i=1 pei
i for e = (e1, . . . , et) ∈ {0, 1}t. The algorithm computes a Hermitian QE

formula Φ(Ā) ∧ ϕ(Ā) of the FOF (2) such that ϕ(ā) is equivalent to∑
e∈{0,1}t

sign(HI′(ā,X̄)
pe(ā,X̄)

) > 0 (Let Hā
e = HI′(ā,X̄)

pe(ā,X̄)
) (3)

for any ā ∈ SΦ ∩ Rm, where each sign(Hā
e ) is the signature of the HQF of the polynomial pe(ā, X̄)

and the ideal I′(ā, X̄) (See Definition 1 - Theorem 5). The FOF (2) has the properties 2 - 4. So,
using G, we are able to compute each parametric HQF, which is the uniform representation of the
HQF Hā

e for any ā ∈ SΦ ∩ Rm (See Remark 9, 10). ϕ are produced by the parametric HQFs (See
Proposition 11). When I′(ā, X̄) is not radical, unfortunately, the parametric HQFs are unnecessarily
complicated, which produces a very complicated ϕ (See Example 12). We may obtain simple ϕ
by using the parametric HQF of its radical. However, the computational complexity of parametric
radical is high even in zero-dimensional cases.

In the paper, we introduce a concept of minimal HQFs (See Definition 13 - Remark 14), and
the Hermitian RRC theory with minimal HQFs. We then show that the concept of minimal HQFs
enables us to simplify unnecessarily complicated Hermitian QE formulas without the computations
of parametric radical ideals. (See Example 21).

The paper is organized as follow: In Section 2, we give a quick review of the essential part of the
Hermitian QE method with an innovative improvement of [3] and several implementation tech-
niques of [4]. More precisely, we describe the Hermitian RRC theory with HQFs in Subsection
2.1, describe CGSs in Subsection 2.2, and describe the essential part in Subsection 2.3. In Section
3, we show the main theorem of the paper.
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2 Theoretical Background
We use the following symbols: N, Q, R and C denote the set of natural numbers, rational numbers,
real numbers and complex numbers respectively. (M)(i, j), rank(M), tr(M) and det(M) denote the
(i, j)-entry, the rank, the trace and the determinant of a square matrix M respectively. For a real
symmetric square matrix H, sign(H) denotes the number such that “the number of the positive
eigenvalues of H” minus “the number of the negative eigenvalues of H”. Identifying H with its
quadratic form, we obtain that sign(H) is equal to the signature of H. Ā and X̄ denote A1, . . . , Am

and X1, . . . , Xn respectively. T (X̄) denotes a set of terms in X̄. Given a term order on T (X̄), LM( f ),
LT( f ) and LC( f ) denote the leading monomial, the leading term and the leading coefficient of
f ∈ Q[Ā, X̄] respectively. We have to note LM( f ) = LC( f )LT( f ) and LC( f ) ∈ Q[Ā]. VR(F) and
VC(F) denote the variety of a set F ⊂ R[X̄] over R and C respectively. That is, we obtain

VR(F) = {x̄ ∈ Rn : ∀ f ∈ F( f (x̄) = 0)}, VC(F) = {x̄ ∈ Cn : ∀ f ∈ F( f (x̄) = 0)}.

#(S ) denotes the cardinality of a finite set S .

2.1 Hermitian Quadratic Forms
In the subsection, we give the Hermitian RRC theory shown independently in [1, 10] and show a
theorem implying the essential part of [3, 4]. First of all, we define HQFs.

Definition 1 Let p ∈ R[X̄], I be a zero-dimensional ideal of R[X̄]. Considering the residue class
ring R[X̄]/I as a vector space, let {v1, . . . , vd} be its basis. For 1 ≤ i, j ≤ d, we give the linear map

hI
(p,i, j) : R[X̄]/I → R[X̄]/I ; g 7→ pviv jg.

Moreover, we define the d-th real symmetric matrix HI
p such that each (HI

p)(i, j) satisfies

(HI
p)(i, j) = tr(hI

(p,i, j)).

The d-th real symmetric matrix HI
p is called the HQF of p and I.

Remark 2 With the same symbols as Definition 1, RT(G) denotes the set of the reduced terms w.r.t.
a GB G of I. That is, RT(G) = {t ∈ T (X̄) : ∀g ∈ G (t is indivisible by LT(g))}. RT(G) plays a role
as a basis {v1, . . . , vd} of R[X̄]/I. The k-th column of hI

(p,i, j) is produced by the reminder of pviv jvk

on division by G. (HI
p)(i, j) is equal to the sum of the diagonal entries of hI

(p,i, j).

We give the Hermitian RRC theory with HQFs shown independently in [1, 10].

Theorem 3 For p ∈ R[X̄] and a zero-dimensional ideal I of R[X̄],

rank(HI
p) = #({x̄ ∈ VC(I) : p(x̄) , 0}), (4)

sign(HI
p) = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0}). (5)

We obtain the corollary which follows from Theorem 3 because HQFs are real symmetric.

Corollary 4 The characteristic polynomial of HI
p is denoted by CI

p. We suppose

C
I
p(Y) = b+d Yd + b+d−1Yd−1 + · · · + b+0 ∈ R[Y],

C
I
p(−Y) = b−d Yd + b−d−1Yd−1 + · · · + b−0 ∈ R[Y].
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Bϱ denotes the number of sign changes of the coefficient sequence (bϱd, b
ϱ
d−1, . . . , b

ϱ
0) for ϱ ∈ {+,−}

(0 is ignored in the sequence). Since each eigenvalue of HI
p is real, Theorem 3 and Descartes’ sign

rule imply

B+ − B− = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0}).

We conclude the subsection with the theorem which follows from Theorem 3, Corollary 4 and [3]
(Corollary 3 - Theorem 5).

Theorem 5 Let p1, . . . , pt ∈ R[X̄], I be a zero-dimensional ideal of R[X̄]. Let Z̄ = Z1, . . . ,Zt,
p =

∏t
i=1 pi, and J = I + ⟨1 − p1Z2

1 , . . . , 1 − ptZ2
t ⟩ ⊂ R[X̄, Z̄]. Then, we obtain

#VR(J) = 2t#({x̄ ∈ VR(I) :
t∧

i=1

pi(x̄) > 0}).

by [3] (Corollary 3). Let I′ = I : p∞ and pe =
∏t

i=1 pei
i for e = (e1, . . . , et) ∈ {0, 1}t. We note that I′

is equal to the elimination ideal J ∩ R[X̄]. Thus, [3] (Corollary 4 and Theorem 5) implies

C
J
1(Y) = c

∏
e∈{0,1}t

C
I′
pe

(Y)

for some non-zero constant c. For e ∈ {0, 1}t, B+e and B−e denote the number of sign changes in the
coefficient sequences of CI′

pe
(Y) and CI′

pe
(−Y) respectively. Then, Theorem 3 and Corollary 4 imply

0 <
∑

e∈{0,1}t
(B+e − B−e )⇔ 0 < #({x̄ ∈ VR(I) :

t∧
i=1

pi(x̄) > 0}).

2.2 Comprehensive Gröbner Systems
We describe CGSs in the subsection. Before defining CGSs, we define algebraic partitions.

Definition 6 LetP be a subset of Cm and S1, . . . ,Sq be subsets ofP. When the properties such that∪q
i=1 Si = P and Si ∩S j = ∅ for 1 ≤ i , j ≤ q and Si = VC(S 1) \ VC(S 2) with finite S 1, S 2 ⊂ Q[Ā]

for 1 ≤ i ≤ q are satisfied, {S1, . . . ,Sq} is called an algebraic partition of P.

Definition 7 Let P ⊂ Cm and S1, . . . ,Sq ⊂ P. Let F,G1, . . . ,Gq be finite subsets of Q[Ā, X̄]. Let ≻
be a term order on T (X̄). When G = {(S1,G1), . . . , (Sq,Gq)} satisfies the properties such that

• {S1, . . . ,Sq} is an algebraic partition of P, and

• Gi(ā, X̄) = {g(ā, X̄) : g ∈ Gi} is a GB of ⟨F(ā, X̄)⟩ ⊂ C[X̄] w.r.t. ≻ for each ā ∈ Si, and

• any g ∈ Gi satisfies LC(g)(ā) , 0 for each ā ∈ Si,

G is called a CGS of ⟨F⟩ on P with parameters Ā w.r.t. ≻. In addition, each Si a segment, and
each Gi a parametric GB.

Remark 8 With the same symbols as (1), letG be a CGS of ⟨ f1, . . . , fs⟩ : p∞ onPφ with parameters
Ā w.r.t. ≻ and ΦS be a defining formula of S for (S,G) ∈ G. Then, the FOF (1) is equivalent to∨

(S,G)∈G

ΦS ∧ ∃X̄ ∈ Rn

∧
g∈G

g = 0 ∧
t∧

i=1

pi > 0


 .

Moreover, each ΦS satisfies the property 2, and each G satisfies the properties 3, 4 of (2).
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Remark 9 With the same symbols as the properties 2 - 4 of (2), let s ∈ Q[Ā, X̄]. For the reminder of
s(ā, X̄) on division by G(ā, X̄), its uniform representation s′ ∈ Q(Ā)[X̄] is produced by the reminder
of s on division by G over Q(Ā)[X̄] such that the coefficient field is the rational function field Q(Ā).
Because G has the properties 3, 4 of (2). More precisely, each coefficient of s′ has a form s1/s2
such that s1, s2 ∈ Q[Ā] satisfy s2(ā) , 0.

Remark 10 We use the same symbols as the properties 2 - 4 of (2). The properties 2 - 4 of (2) imply
that ⟨G(ā, X̄)⟩ is zero-dimensional and RT(G(ā, X̄)) is invariant. In addition, we have also Remark
2 and 9. Therefore, we can compute the uniform representation H⟨G⟩pe of the HQF of pe(ā, X̄) and
⟨G(ā, X̄)⟩, whose each entry has the form s1/s2 such that s1, s2 ∈ Q[Ā] satisfy s2(ā) , 0. In the
paper, the symmetric matrix H⟨G⟩pe is called the parametric HQF of pe and ⟨G⟩. More precisely, each
entry also has the form s1/s2 such that s1, s2 ∈ Q[Ā] satisfy s2(ā) , 0.

2.3 Hermitian Quantifier Elimination
We give the essential part of the Hermitian QE method with [3, 4], which follows from Theorem
5.

Proposition 11 With the same symbols as the properties 2 - 4 of (2), let pe =
∏t

i=1 pei
i for e =

(e1, . . . , et) ∈ {0, 1}t. Since Remark 10 implies that each C⟨G⟩pe has rational functions of Q(Ā) as its
coefficients, we suppose

C
⟨G⟩
pe

(Y) = b+d Yd + b+d−1Yd−1 + · · · + b+0 ∈ Q(Ā)[Y],

C
⟨G⟩
pe

(−Y) = b−d Yd + b−d−1Yd−1 + · · · + b−0 ∈ Q(Ā)[Y].

Let S ϱe = (bϱd, . . . , b
ϱ
0) for ϱ ∈ {+,−}. Let Bϱe(ā) be the number of sign changes in S ϱe(ā) =

(bϱd(ā), . . . , bϱ0(ā)) for ā ∈ SΦ ∩ Rm. Using the numerator and denominator polynomials of S ϱe ,
we compute the QFF ϕ(Ā) such that ϕ(ā) is equivalent to

0 <
∑

e∈{0,1}t
(B+e (ā) − B−e (ā))

for ā ∈ SΦ ∩ Rm. Then, Theorem 5 implies that Φ ∧ ϕ is equivalent to (2).

Although we can obtain a Hermitian QE formula of (2) based on Proposition 11, the Hermitian QE
formula is unnecessarily complicated in the case such that the parametric ideal is not radical.

Example 12 We consider the FOF as like A , 0 ∧ ∃X ∈ R ((X − A)2 = 0 ∧ X > 0). We treat
I = ⟨(X − A)2⟩ : X∞ with a parameter A. Computing a CGS of I on S = {a ∈ C : a , 0} w.r.t
the term order ≻ satisfying X0 ≺ X1 ≺ · · · with a parameter A, we obtain {(S, {(X − A)2})}. Let
GI = {(X − A)2}. Since RT(GI) = {1, X}, we obtain

H⟨G
I⟩

1 =

(
2 2A
2A 2A2

)
, H⟨G

I⟩
X =

(
2A 2A2

2A2 2A3

)
.

We have theirs characteristic polynomials

C
⟨GI⟩
1 = Y2 − 2(A2 + 1)Y, C⟨G

I⟩
X = Y2 − 2A(A2 + 1)Y.

Let b1 = −2(A2 + 1), bX = −2A(A2 + 1) ∈ Q[A]. Then, we obtain the Hermitian QE formula

A , 0 ∧ b1 < 0 ∧ bX < 0.
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Because, for any ideal I of R[X̄] and any polynomial p of R[X̄] with I : p∞ = I, Theorem 3 implies

{x̄ ∈ VR(I) : p(x̄) > 0} , ∅ ⇔

sign(HI
1) > 0 ∧

 ∨
0≤k<sign(HI

1)

(sign(HI
p) = sign(HI

1) − k)


 .

Meanwhile, we consider the parametric radical J =
√

I. We obtain {(S, {X − A})} as a CGS of J
over S w.r.t. ≻. Let GJ = {X − A}. Since RT(GJ) = {1}, we obtain

H⟨G
J⟩

1 =
(

1
)
, H⟨G

J⟩
X =

(
A

)
.

Moreover, we have theirs characteristic polynomials C⟨G
J⟩

1 = Y − 1, C⟨G
J⟩

X = Y − A. Thus, we obtain
also the simple Hermitian QE formula A , 0 ∧ −A < 0 by using the parametric radical.

3 Minimal Hermitian Quadratic Forms
In cases such as Example 12, the HQFs are unnecessarily complicated, which produces a very
complicated Hermitian QE formula. In the section, we introduce a concept of minimal HQF, show
the Hermitian RRC theory with minimal HQFs, and reconsider Example 12. In more detail, we
prove the main theorem in Subsection 3.1 and reconsider Example 12 in Subsection 3.2. First of
all, we introduce the definition of minimal HQFs.

Definition 13 Let p ∈ R[X̄], I be a zero-dimensional ideal of R[X̄] and r = rank(HI
p). We assume

r , 0. (6)

HI
p(C) denotes the r-th principal matrix of HI

p such that each (HI
p(C))(i, j) satisfies

(HI
p(C))(i, j) = (HI

p)(Ci,C j)

for C = (C1, . . . ,Cr) ∈ Nr with 1 ≤ C1 < . . . < Cr ≤ d. We choose c = (c1, . . . , cr) ∈ Nr with

rank(HI
p(c)) = r (7)

and 1 ≤ c1 < . . . < cr ≤ d. Then, the principal matrix HI
p(c) is called a minimal HQF of HI

p.

Remark 14 The known fact of linear algebra implies that there are some c = (c1, . . . , cr) ∈ Nr

with (7) and 1 ≤ c1 < . . . < cr ≤ d because we assume (6).

We show the Hermitian RRC theory with minimal HQFs as the main theorem.

Theorem 15 (Main Theorem) Using the same symbols as Definition 13, we obtain the property

sign(HI
p(c)) = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0}).

Theorem 15 implies the corollary because minimal HQFs also are real symmetric.

Corollary 16 The characteristic polynomial of HI
p(c) is denoted by cDI

p. In addition, we suppose

c
D

I
p(Y) = γ+r Yr + · · · + γ+0 ∈ R[Y],

c
D

I
p(−Y) = γ−r Yr + · · · + γ−0 ∈ R[Y].

Let Γϱ be the number of sign changes in the coefficient sequence (γϱr , . . . , γ
ϱ
0) for ϱ ∈ {+,−}. Then,

Γ+ − Γ− = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0})

follows from Theorem 15 because all eigenvalues of HI
p(c) are real.
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3.1 Proof of Main Theorem
We use the same symbols as Definition 1, 13, Theorem 3, 15. z̄

′
denotes the conjugate of z̄ ∈ Cm.

We suppose that {x̄ ∈ VR(I) : p(x̄) , 0} and {z̄ ∈ VC(I) \VR(I) : p(z̄) , 0} have the following forms:

{x̄ ∈ VR(I) : p(x̄) , 0} = {x̄1, . . . , x̄µ},
{z̄ ∈ VC(I) \ VR(I) : p(z̄) , 0} = {z̄1, z̄

′

1, . . . , z̄ν, z̄
′

ν}.

Each σk denotes the multiplicity of x̄k and each ςk the multiplicity of z̄k, z̄
′

k. We start the subsection
(that is, the proof of Theorem 15) with the lemma which is used in [10] (Theorem 2.1).

Lemma 17 Stickelberger’s Theorem implies that each entry (HI
p)(i, j) is equal to

µ∑
k=1

σk p(x̄k)vi(x̄k)v j(x̄k) +
ν∑

k=1

(ςk p(z̄k)vi(z̄k)v j(z̄k) + ςk p(z̄
′

k)vi(z̄
′

k)v j(z̄
′

k)).

Let ui = vci for 1 ≤ i ≤ r. The following lemma follows from Lemma 17.

Lemma 18 Lemma 17 implies that each entry (HI
p(c))(i, j) is equal to

µ∑
k=1

σk p(x̄k)ui(x̄k)u j(x̄k) +
ν∑

k=1

(ςk p(z̄k)ui(z̄k)u j(z̄k) + ςk p(z̄
′

k)ui(z̄
′

k)u j(z̄
′

k)).

The imaginary unit is denoted by I. We introduce the real numbers pR
k , p

I
k, u

R
(i,k), u

I
(i,k) ∈ R satisfying

ςk p(z̄k) = (pR
k + Ip

I
k)2, ui(z̄k) = uR

(i,k) + Iu
I
(i,k),

for 1 ≤ k ≤ ν, 1 ≤ i ≤ r. Noting that (4) implies r = µ + 2ν, we introduce the r-th matrix

U =



u1(x̄1) · · · ur(x̄1)
...

...
u1(x̄µ) · · · ur(x̄µ)

pR
1 uR

(1,1) − pI
1uI

(1,1) · · · pR
1 uR

(r,1) − pI
1uI

(r,1)
pR

1 uI
(1,1) + pI

1uR
(1,1) · · · pR

1 uI
(r,1) + pI

1uR
(r,1)

...
...

pR
ν uR

(1,ν) − pI
νu

I
(1,ν) · · · pR

ν uR
(r,ν) − pI

νu
I
(r,ν)

pR
ν uI

(1,ν) + pI
νu

R
(1,ν) · · · pR

ν uI
(r,ν) + pI

νu
R
(r,ν)


.

In addition, we introduce the r-th diagonal matrix V whose the diagonal entry are

σ1 p(x̄1), . . . , σµp(x̄µ), 2,−2, · · · , 2,−2.

tH denotes the transpose of a matrix H. Then, we obtain the following proposition.

Proposition 19 HI
p(c) = tUVU.

Proof: Lemma 18 implies that each entry (HI
p(c))(i, j) is equal to

µ∑
k=1

σk p(x̄k)ui(x̄k)u j(x̄k) +
ν∑

k=1

((pR
k + Ip

I
k)2(uR

(i,k) + Iu
I
(i,k))(u

R
( j,k) + Iu

I
( j,k)) +

(pR
k − IpI

k)2(uR
(i,k) − IuI

(i,k))(u
R
( j,k) − IuI

( j,k))).
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Since V is diagonal, each entry (tUVU)(i, j) has the form as like

r∑
k=1

(tU)(i,k)(V)(k,k)(U)(k, j) =

r∑
k=1

(U)(k,i)(V)(k,k)(U)(k, j).

Therefore, each entry (tUVU)(i, j) is equal to

µ∑
k=1

σk p(x̄k)ui(x̄k)u j(x̄k) +
ν∑

k=1

(2(pR
k uR

(i,k) − pI
kuI

(i,k))(pR
k uR

( j,k) − pI
kuI

( j,k)) −

2(pR
k uI

(i,k) + pI
kuR

(i,k))(pR
k uI

( j,k) + pI
kuR

( j,k))).

Using the above expression of the entry (HI
p(c))(i, j) and (tUVU)(i, j), we introduce

βk = (pR
k + Ip

I
k)2(uR

(i,k) + Iu
I
(i,k))(u

R
( j,k) + Iu

I
( j,k)) + (pR

k − IpI
k)2(uR

(i,k) − IuI
(i,k))(u

R
( j,k) − IuI

( j,k)),

γk = 2(pR
k uR

(i,k) − pI
kuI

(i,k))(pR
k uR

( j,k) − pI
kuI

( j,k)) − 2(pR
k uI

(i,k) − pI
kuR

(i,k))(pR
k uI

( j,k) − pI
kuR

( j,k)).

Then, we obtain βk = γk for 1 ≤ k ≤ ν. Therefore, the assertion is satisfied. �

In addition, we show the following proposition by using the property (7) of minimal HQFs.

Proposition 20 rank(U) = r.

Proof: Let Eµ be the µ-th identity matrix. Moreover, we introduce the matrices Pk and J satisfying

Pk =

(
pR

k −pI
k

pI
k pR

k

)
, J =

1
2

(
1 1
−I I

)
for 1 ≤ k ≤ ν. In addition, we introduce the r-th matrices U1, U2 and U3 which have the forms

U1 =


Eµ 0 · · · 0

0 P1
. . .

...
...
. . .

. . . 0
0 · · · 0 Pν

 , U2 =


Eµ 0 · · · 0

0 J
. . .

...
...
. . .

. . . 0
0 · · · 0 J

 ,

U3 =



u1(x̄1) · · · ur(x̄1)
...

...
u1(x̄µ) · · · ur(x̄µ)

uR
(1,1) + Iu

I
(1,1) · · · uR

(r,1) + Iu
I
(r,1)

uR
(1,1) − IuI

(1,1) · · · uR
(r,1) − IuI

(r,1)
...

...
uR

(1,ν) + Iu
I
(1,ν) · · · uR

(r,ν) + Iu
I
(r,ν)

uR
(1,ν) − IuI

(1,ν) · · · uR
(r,ν) − IuI

(r,ν)


.

We have to note U = U1U2U3. In addition, we obtain det(U1) =
∏ν

k=1((pR
k )2+(pI

k)2) and det(U2) =
Iν. Therefore, we obtain also

det(U1) , 0, det(U2) , 0
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since {z̄1, z̄
′

1, . . . , z̄ν, z̄
′
ν} = {z̄ ∈ VC(I) \ VR(I) : p(z̄) , 0}. Let U4 be the r-th diagonal matrix having

σ1 p(x̄1), . . . , σµp(x̄µ), ς1 p(z̄1), ς1 p(z̄
′

1), . . . , ςνp(z̄ν), ςνp(z̄
′

ν)

as its diagonal entries. Lemma 18 implies HI
p(c) = tU3U4U3, so the property (7) give the property

det(U3) , 0.

Thereby, we obtain rank(U1) = r, rank(U2) = r and rank(U3) = r. Since we have also U = U1U2U3
shown in the above, the assertion is satisfied. �

We conclude the subsection with the proof of Theorem 15 by using Proposition 19, 20.

Proof of Theorem 15: Proposition 19, 20 and Sylvester’s law of inertia imply

sign(HI
h(c)) = sign(V).

Because V is the diagonal matrix with the diagonal entries σ1 p(x̄1), . . . , σµp(x̄µ), 2,−2, · · · , 2,−2,

sign(V) = #({x̄ ∈ VR(I) : p(x̄) > 0}) − #({x̄ ∈ VR(I) : p(x̄) < 0}).

Therefore, we obtain the claim. �

3.2 Application
We reconsider Example 12 in the subsection.

Example 21 With the same symbols as Example 12, we have to note that H⟨G(a,X)⟩
1 and H⟨G

I (a,X)⟩
X

satisfy the assumption (6) for any a ∈ S. In addition, we have to note also that theirs determinants
are equal to 0 for any a ∈ S. First of all, by using the script (1) ∈ N1 we compute

H⟨G
I⟩

1 (1) =
(

2
)
, H⟨G

I⟩
X (1) =

(
2A

)
.

We compute theirs characteristic polynomials

D
⟨GI⟩
1 (Y) = Y − 2, D⟨G

I⟩
X (Y) = Y − 2A.

Let S(1,1) = S ∩ (VC(0) \ VC(−2)) ∩ (VC(0) \ VC(−2A)). Then, we obtain S(1,1) = S. Therefore, we
are able to obtain the simple Hermitian QE formula A , 0 ∧ −2A < 0.

In addition, we consider a more general example.

Example 22 Let Φ be the QFF A1A2 , 0 ∧ A2
2 − 4A3

3 = 0 and S = {ā ∈ C3 : Φ(ā)}. We consider

Φ ∧ ∃X̄ ∈ R2 (A1X2 + A2X1 + A3
3 = 0 ∧ X2

1 − A1X2 = 0 ∧ X1 > 0).

As a CGS of I = ⟨A1X2 + A2X1 + A3
3, X

2
1 − A1X2⟩ : X∞1 on S w.r.t the lexicographic term order ≻

satisfying X1 ≺ X2 with parameters A1, A2, A3, we obtain

{(S, {−4A1X2 − 4A2X1 − A2
2, (2X1 + A2)2})}.

Let GI = {−4A1X2 − 4A2X1 − A2
2, (2X1 + A2)2}. Since RT(GI) = {1, X1}, we obtain the HQFs

H⟨G
I⟩

1 =
1
2

(
4 −2A2
−2A2 A2

2

)
, H⟨G

I⟩
X1
=

1
4

(
−4A2 2A2

2
2A2

2 −A3
2

)
.
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We have theirs characteristic polynomials

C
⟨GI⟩
1 = Y2 − (2 +

A2
2

2
)Y, C⟨G

I⟩
X = Y2 +

A2

2
(2 +

A2
2

2
)Y.

Let b1 = −(2 + A2
2

2 )Y, bX =
A2
2 (2 + A2

2
2 ) ∈ Q[A]. Then, we obtain the Hermitian QE formula

Φ ∧ b1 < 0 ∧ bX < 0.

By using the script (1) ∈ N1 we compute the minimal HQF

H⟨G
I⟩

1 (1) =
(

2
)
, H⟨G

I⟩
X (1) =

(
− A2

2

)
.

We compute theirs characteristic polynomials

D
⟨GI⟩
1 (Y) = Y − 2, D⟨G

I⟩
X (Y) = Y +

A2

2
.

Let S(1,1) = S∩ (VC(0) \VC(−2))∩ (VC(0) \VC( A2
2 )). Then, we obtain S(1,1) = S. Therefore, we are

able to obtain the simple Hermitian QE formula Φ ∧ A2
2 < 0.

4 Conclusion
We have introduced minimal HQFs, and showed the Hermitian RRC theory with minimal HQFs
as the main theorem. As like Example 21, 22, we can obtain a Hermitian QE formula of (2) by
combining Theorem 15, Corollary 16 with Proposition 11. We may compute a partition such that

its cardinality is equal to
∑

1≤r≤d

(dCr)2t

at worst. So, we need to carefully choose each minimal parametric HQF, and carefully implement
the Hermitian QE with the concept of minimal HQFs. Moreover, there are some choices having a
little effect on simplification. When we choose not H⟨G

I⟩
1 (1) and H⟨G

I⟩
X (1) but one of the followings

in Example 21 at the first, the choices have a little effect on simplification:

H⟨G
I⟩

1 (2) and H⟨G
I⟩

X (2),

H⟨G
I⟩

1 (2) and H⟨G
I⟩

X (1), or

H⟨G
I⟩

1 (1) and H⟨G
I⟩

X (2)

For example, when we choose the first one, we obtain A , 0 ∧ −2A2 < 0 ∧ −2A3 < 0. That is, in
this paper, there are the following problems when we compute a Hermitian QE formula of (2) by
combining Theorem 15, Corollary 16 with Proposition 11.

• We may compute a partition such that its cardinality is equal to
∑

1≤r≤d(dCr)2t
at worst.

• There are some choices having a little effect on simplification.

The author try to solve the problems as future works. That is, the author try to obtain a solution
to has a partition such that its cardinality is less than

∑
1≤r≤d(dCr)2t

even at worst, and a solution to
has only some choices having a great effect on simplification.
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