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Abstract

For the given coprime polynomials over integers, we change their coefficients slightly over in-
tegers so that they have a greatest common divisor (GCD) over integers. That is an approximate
polynomial GCD over integers. There are only two algorithms known for this problem. One is
based on an algorithm for approximate integer GCDs. The other is based on the well-known
subresultant mapping and the lattice basis reduction. In this paper, we give an improved algo-
rithm of the latter with a new lattice construction process by which we can restrict the range of
perturbations. This helps us for computing approximate polynomial GCD over integers of the
input erroneous polynomials having a priori errors on some digits of their coefficients.
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1 Introduction

Symbolic numeric algorithms for polynomials are very important, especially for practical com-
putations since we have to operate with empirical polynomials having numerical errors on their
coefficients. Recently, for those erroneous polynomials, many algorithms have been introduced,
approximate univariate GCD and approximate multivariate factorization for example. However,
for polynomials over integers having erroneous coefficients (e.g. rounded from empirical data),
changing their coefficients over reals does not remain them in the polynomial ring over integers,
hence we need algorithms designed over integers. In this paper, we discuss about computing a
polynomial GCD of univariate or multivariate polynomials over integers approximately. Here,
“approximately” means that we compute a polynomial GCD over integers by changing their coef-
ficients slightly over integers so that the input polynomials still remain over integers. We improve
one of known algorithms for computing an approximate polynomial GCD over integers defined
below.

Definition 1 (Approximate Polynomial GCD Over Integers)
Let f (x⃗) andg(x⃗) be polynomials in variables⃗x = x1, . . . , xℓ overZ, and letε be a small positive
integer. If they satisfyf (x⃗) = t(x⃗)h(x⃗) + ∆ f (x⃗), g(x⃗) = s(x⃗)h(x⃗) + ∆g(x⃗) andε = max{∥∆ f ∥, ∥∆g∥}
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for some polynomials∆ f ,∆g ∈ Z[ x⃗], then we say that the above polynomialh(x⃗) is anapproximate
GCD over integers. We also say thatt(x⃗) ands(x⃗) areapproximate cofactors over integers, and we
say that theirtolerance is ε. ( ∥p∥ denotes a suitable norm ofp(x⃗).) ▹

Example 2
Let f (x1, x2) andg(x1, x2) be the following polynomials over integers, which are relatively prime
and supposed to have numerical errors on their coefficients.

f (x1, x2) = 1530x2
1x2

2 − 3601x2
1x2 + 2109x2

1 − 171x1x2
2

+ 3506x1x2 − 3703x1 − 699x2
2 + 94x2 + 1561,

g(x1, x2) = 2755x2
1x2

2 − 5851x2
1x2 + 3110x2

1 − 5118x1x2
2

+ 5296x1x2 + 351x1 + 2275x2
2 − 1098x2 − 3822.

We would find the following approximate GCD over integers, where the underlined figures are
slightly changed to make them having a non-trivial polynomial GCD.

f (x1, x2) ≈ (34x1x2 − 37x1 − 25x2 + 39)× (45x1x2 − 57x1 + 28x2 + 40)
= 1530x2

1x2
2 − 3603x2

1x2 + 2109x2
1 − 173x1x2

2
+ 3504x1x2 − 3703x1 − 700x2

2 + 92x2 + 1560,
g(x1, x2) ≈ (34x1x2 − 37x1 − 25x2 + 39)× (81x1x2 − 84x1 − 91x2 − 98)

= 2754x2
1x2

2 − 5853x2
1x2 + 3108x2

1 − 5119x1x2
2

+ 5294x1x2 + 350x1 + 2275x2
2 − 1099x2 − 3822.

In this case,∆ f = 2x2
1x2+2x1x2

2+2x1x2+x2
2+2x2+1, ∆g = x2

1x2
2+2x2

1x2+2x2
1+x1x2

2+2x1x2+x1+x2

andε = 2 in the∞-norm. ▹

We note that for polynomials over the complex numbers, there are many studies and various
algorithms ([12, 6, 4, 15, 31, 30, 5, 32, 23, 34, 33, 25, 13, 22, 9, 24, 8, 16, 21, 26, 27, 20, 2, 3, 7]).
Hence one may think that we can compute an approximate GCD over integers by rounding the re-
sult by those algorithms since they compute approximate GCDs over complex numbers. However,
it is difficult to make them as polynomials over integers since the resulting tolerance easily becomes
large and far from the given polynomials (see [18]). Therefore, we need algorithms designed for
polynomials over integers.

For computing approximate GCD over integers, there are two known algorithms. One is based
on the result from approximate integer common divisors by Howgrave-Graham ([11]). The other is
based on the well-known subresultant mapping and the lattice basis reduction (the LLL algorithm
[14]). The former algorithm is originally proposed by von zur Gathen and Shparlinski ([29]) at
LATIN 2008 and revised by von zur Gathen et al ([28]). Their algorithm only works for very
tiny tolerances and one of input polynomialsf (x⃗) andg(x⃗) must be given exactly and can not be
perturbed. However, the algorithm always can compute an approximate GCD over integers if the
given polynomials satisfy the certain conditions. The latter algorithm is proposed by the present
author ([17]) at ISSAC 2008 and revised ([18]). In contrast with that by von zur Gathen et al., this
algorithm works for not only very tiny but also small tolerances and all the given polynomials can
be perturbed (as described in the definition). However, any theoretical condition which guarantees
that the algorithm can compute an approximate GCD over integers, is not given.

1.1 The problem to be solved

In this paper, we give an improved algorithm with a new lattice construction process by which we
can restrict the range of perturbations in some cases. This helps us for computing approximate
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polynomial GCD over integers of the input erroneous polynomials having a priori errors on some
digits of their coefficients. For example, the known methods can not compute any approximate
polynomial GCD over integers for the following polynomials.

f (x) = −302260x4 − 174933528x3 + 45943440x2 + 231047900996x− 143756712
≈

(
889x2 + 512701x− 319

) (
−340x2 − 692x+ 450648

)
− 2× 103x2,

g(x) = 526407460x4 + 303589900698x3 − 690875197x2 − 323202349x+ 205289
≈

(
889x2 + 512701x− 319

) (
592140x2 − 978x− 631

)
− 5× 103x4 + 4× 103.

In this case, the tolerance (the absolute error) is 5× 103 in the∞-norm and the relative error is not
small in relation to the smallest coefficients hence computing an approximate GCD over integers
for this pair of polynomials is not so easy. In fact, the known algorithms ([17],[18]) can not detect
any expected result.

One may think that this example seems to be odd. However, this situation possibly occurs in
some computations with multi-precision integers (each integer is represented as an array of word
size integers). For example, transmission errors on some elements of the array, computing lower
and higher digits separately and so on. In fact, the above pair of polynomials has perturbations
on the second digit only (as an array of 103 integers) hence they are in this case. Moreover, this
is also useful for simplifying algebraic expressions (e.g. each simplicity of expression is heavily
depending on the number of terms not the magnitude of coefficients in general) as in the following
polynomial.

f (x1, x2) =
(
286x2

2 − 54821x2 − 3907787
)

x2
1

+
(
203830x2

2 + 11276643x2 + 35293
)

x1 − 17930x2
2 − 990865x2 + 54765

= (22x2 + 1217)((13x2 − 3211)x2
1 + (9265x2 + 29)x1 − 815x2 + 45)+ 5× 102x2x1.

For this problem, we review the algorithm given by the present author ([18]) in Section2. We
give a new lattice construction process in Section3, including various numerical examples. In
Section4, we give some remarks for this extension. We note that the present article is an ex-
tended work of the presentation ([19]) with the extended abstract at SNC 2011 (Symbolic-Numeric
Computation, June 7-9, 2011, San Jose, California), and the ideal of this paper is based on the
preliminary presentation about computing approximate GCD of integers (not polynomials) by the
present author in Research Institute for Mathematical Sciences, Kyoto University in 2010.

2 Approximate GCD by Lattice Basis Reduction

We review the known result ([17],[18]) briefly. Let f (x⃗) andg(x⃗) have total degreesn = tdeg(f )
andm= tdeg(g), respectively. We call the following mappingSr ( f ,g) the subresultant mapping of
f (x⃗) andg(x⃗) of orderr.

Sr ( f ,g) :
Pm−r−1 × Pn−r−1 → Pn+m−r−1

(s(x⃗), t(x⃗)) 7→ s(x⃗) f (x⃗) + t(x⃗)g(x⃗)

where r = 0, . . . ,min{n,m} − 1 andPd denotes the set of polynomials in variablesx1, . . . , xℓ,
of total degreed or less. We denote the coefficient vector of polynomialp(x⃗) by vect(p) w.r.t.
the lexicographic ascending order in this article. We note that any term order can be used for
representing coefficient vectors since the order is not essential. To see the number of elements
of a coefficient vector, we define the notation:βd,r =

(
d−r+ℓ
ℓ

)
hence the number of termsxi1

1 · · · x
iℓ
ℓ
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satisfyingi1 + · · · + iℓ ≤ d can be denoted byβd,0. Thek-th convolution matrixCk( f ) is defined
to satisfyCk( f )vect(p) = vect(f p) for any polynomialp(x⃗) of total degreek − 1 or less, where
vect(p) ∈ Zβk−1,0×1 andCk( f ) ∈ Zβn+k−1,0×βk−1,0. We have the matrix representation of the subresultant
mapping:Sylr ( f , g) = (Cm−r ( f ) Cn−r (g)) of size (βn+m−1,r ) × (βm−1,r + βn−1,r ), satisfying

Sr ( f ,g) :
Pm−r−1 × Pn−r−1 → Pn+m−r−1

( vect(s) t vect(t) t )t 7→ vect(s f + tg) = Sylr ( f ,g)( vect(s) t vect(t) t )t.

This mapping is the same as in [10], and has the same property thatf (x⃗)/t(x⃗) andg(x⃗)/s(x⃗)
is the GCD of f (x⃗) and g(x⃗) if r is the greatest integer such that this mapping is not injective.
Hence by computing null vectors ofSylr ( f ,g) approximately for the given coprime polynomials,
we can compute candidate vectors of approximate cofactors over integers. This procedure can be
done by finding short vectors by the well-known LLL algorithm ([14]). For this, we construct the
lattice generated by the row vectors ofL( f ,g, r, c) which is defined as the following matrix where
r denotes the order of the subresultant mapping.

L( f ,g, r, c) = (Eβn−1,r+βm−1,r | c · Sylr ( f ,g)t)

whereEi denotes the identity matrix of sizei × i andc ∈ Z. The size ofL( f ,g, r, c) is (βn−1,r +

βm−1,r ) × (βn−1,r + βm−1,r + βn+m−1,r ). We note that we mark a block matrix with a vertical bar to
distinguish the identity matrix representing a collection of linear combinations from the matrix
formed by the coefficient vectors.

However, the short vectors found are only candidate cofactorst(x⃗) and s(x⃗) ∈ Z[ x⃗] such that
s(x⃗) f (x⃗)+ t(x⃗)g(x⃗) ≈ 0, andf (x⃗) andg(x⃗) may not be divisible byh(x⃗). To compute an approximate
GCD from the candidate cofactors, we apply the LLL algorithm again to the lattice generated by
the row vectors of the following matrixH( f ,g, r, c, t, s) of size (βr+1,0+1)× (βn,0+βm,0+βr+1,0+1).

H( f ,g, r, c, t, s) =

(
Eβr+1,0+1

∣∣∣∣∣∣ c · vect(f )t c · vect(g)t

c ·Cr+2(−t)t c ·Cr+2(s)t

)
.

We have the following lemmas in [18].

Lemma 3
Let B be a bound of maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗). For
the lattice generated by the rows ofL( f ,g, r, cL) with cL = 2(βn−1,r+βm−1,r−1)/2

√
βn−1,r + βm−1,r B, the

LLL algorithm can find a short vector whose firstβn−1,r + βm−1,r elements are a multiple of the
transpose of the coefficient vectors of cofactors off (x⃗) andg(x⃗) by their GCD, ifr is the greatest
integer such that the subresultant mapping is not injective. ▹

Lemma 4
Let B be a bound of maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗). For
the lattice generated by the row vectors ofH( f ,g, r, cH , t, s) with cH = 2βr+1,0/2

√
βr+1,0 + 1B + 1,

the LLL algorithm can find a short vector whose2-nd, . . ., (βr+1,0+1)-th elements are a multiple of
the transpose of the coefficient vector of the GCD off (x⃗) andg(x⃗), if r is the greatest integer such
that the subresultant mapping is not injective. ▹

For example, we consider the following pair of erroneous polynomials.

f (x) = 20x2 + 18x− 27 = (4x+ 7)(5x− 4)− x+ 1,
g(x) = 29x2 + 61x+ 19 = (4x+ 7)(7x+ 3)+ x2 − 2.
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We construct the following matrixL( f ,g, r, c) with r = 0 andc = 1, and apply the LLL algorithm
to the lattice generated by the row vectors ofL( f ,g, r, c).

1 0 0 0 19 61 29 0
0 1 0 0 0 19 61 29
0 0 1 0 −27 18 20 0
0 0 0 1 0 −27 18 20

→

−4 5 −3 −7 5 −14 3 5
−5 6 −3 −9 −14 −2 −1 −6
−7 9 −5 −13 2 5 12 1
−4 5 −3 −8 5 13 −15 −15

 .
We take the first row vector as candidate cofactors (we note that we have to seek the candidate

through all the short vectors). We construct the following matrixH( f ,g, r, c, t, s) with c = 1 and
apply the LLL algorithm, to compute an approximate GCD. 1 0 0 −27 18 20 19 61 29

0 1 0 −4 5 0 3 7 0
0 0 1 0 −4 5 0 3 7

→
 1 −7 −4 1 −1 0 −2 0 1

0 1 0 −4 5 0 3 7 0
0 0 1 0 −4 5 0 3 7

 .
Hence, we get 4x + 7 as an approximate polynomial GCD over integers and 5x − 4 and 7x + 3

as approximate cofactors. We note that there are more complicated examples, some lemmas and
techniques for decreasing the computing-time (see [17],[18]) though we do not show them here.

3 Digits-wise Lattice

The algorithms introduced in [17] and [18] work well for nearby polynomials having polynomial
GCD, according to the numerical experiments therein. However, they can not detect any approxi-
mate GCD for the following type of polynomials as noted in the introduction. We note again that
this problem is not so special in practice (multi-precision integers, simplifying algebraic expres-
sions and so on). It could be more general word sizes (e.g. 232) though the word size we use here
is 101 since this is easy to understand and does not exceed the paper width.

f (x) = 32x3 + 76x2 + 22x+ 15 = (4x+ 5)(8x2 + 4x+ 3)+ 20x2 − 10x,
g(x) = 10x3 + 53x2 + 59x+ 40 = (4x+ 5)(5x2 + 7x+ 6)− 10x3 + 10.

To extend the algorithms for the above case (all the coefficients have a priori errors on only the
limited number of digits), we introduce the following digits-wise lattice instead ofL( f ,g, r, c) by
extending the coefficient vector to the digits-wise.

L( f ,g, r, c) =

1 0 0 0 0 0 40 59 53 10 0 0
0 1 0 0 0 0 0 40 59 53 10 0
0 0 1 0 0 0 0 0 40 59 53 10
0 0 0 1 0 0 15 22 76 32 0 0
0 0 0 0 1 0 0 15 22 76 32 0
0 0 0 0 0 1 0 0 15 22 76 32


⇒



1 0 0 0 0 0 4 0 5 9 5 3 1 0 0 0 0 0
0 1 0 0 0 0 0 0 4 0 5 9 5 3 1 0 0 0
0 0 1 0 0 0 0 0 0 0 4 0 5 9 5 3 1 0
0 0 0 1 0 0 1 5 2 2 7 6 3 2 0 0 0 0
0 0 0 0 1 0 0 0 1 5 2 2 7 6 3 2 0 0
0 0 0 0 0 1 0 0 0 0 1 5 2 2 7 6 3 2


.

However, the row spaces of the above matrices are not the same and they are essentially different
since digit-wise operations can not follow the carrying and borrowing operations for integers. For
computing an approximate GCD we need to guarantee that the row space has the coefficient vectors
corresponding to their cofactors, hence we have to perform some artificial carrying and borrowing
operations in this row space. To do this, we add some extra row vectors representing carry and
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borrow digits to the matrix as follows.

1 0 0 0 0 0 4 0 5 9 5 3 1 0 0 0 0 0
0 1 0 0 0 0 0 0 4 0 5 9 5 3 1 0 0 0
0 0 1 0 0 0 0 0 0 0 4 0 5 9 5 3 1 0
0 0 0 1 0 0 1 5 2 2 7 6 3 2 0 0 0 0
0 0 0 0 1 0 0 0 1 5 2 2 7 6 3 2 0 0
0 0 0 0 0 1 0 0 0 0 1 5 2 2 7 6 3 2
0 0 0 0 0 0−1 10 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10




extra rows.

Moreover, in this case, if we can assume that only the second digit has a priori error hence we
multiple the columns except ones corresponding to the second digit by 100 as a penalty weight.
The LLL algorithm gives the following result for the lattice generated by row vectors of this scaled
matrix.

1 −2 6 −2 1 −5 1 0 −5 0 −3 0 16 0 −5 0 −10 0
3 4 8 −6 −7 −5 3 0 10 0 3 0−12 0 −14 0 −8 0
0 −10 0 10 0 0 15 0 −18 0 17 0−21 0 −10 0 0 0
2 −4 2 −4 2 0 2 0 −10 0 −31 0 −5 0 13 0 2 0
6 −2 −4 −2 6 0 21 0 32 0 2 0 11 0 −4 0 −4 0
−1 2 −16 2 9 5 −1 0 20 0 −15 0 1 0 −16 0 0 0

2 4 2 −6 −3 0 −1 0 10 100−10 0 −7 0 5 0 2 0
−3 −1 −4 6 1 0 −3 0 −7 0 10 0 −5 −100 −19 0 −4 0

1 −2 4 −2 −1 0 1 0 −8 0 −8 100 0 0 16 0 4 0
3 −5 −1 4 1 0 18 0 8 0 15 0 −9 0 −7 −100 −1 0
−3 −2 −4 6 3 1 −3 0 −8 0 10 0 7 0 −6 0 −1 200

2 −4 2 1 2 0 9 500 1 0 7 0 11 0 13 0 2 0



.

We can see that the resulting matrix has the row vector corresponding to the coefficient vectors of
expected approximate cofactors (8x2 + 4x+ 3, 5x2 + 7x+ 6) on the second row underlined. In the
following subsections, we formalize this process into definitions and an algorithm.

3.1 Definitions of Digits-wise Representation

We denote the canonical form of lengthw of the baseb digits in the integera as

∀a ∈ Z, digitsb,w(a) = {aw−1, . . . , a1,a0} such that

a =
∑w−1

i=0 aibi and

{
0 ≤ sign(a)ai < b (i = 0, . . . ,w− 2)
sign(a) = sign(ai) (i = w− 1).

For example, we have digits10,2(123)= {12,3}, digits10,3(123)= {1,2, 3}, digits10,4(123)= {0,1,2,3}
and digits10,3(−123) = {−1,−2,−3}. We extend the coefficient vector of polynomialp(x⃗) to the
digits-wise operations and denote it by vectb,w(p) whereb and w are the base number and the
length of the list of digits, respectively, such that

vectb,w(p) = {digitsb,w(pe) . . . digitsb,w(p0)}t where vect(p) = {pe . . . p0}t.
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For example, we have vect10,2(32x3 + 76x2 + 22x + 15) = {1,5,2,2,7,6,3,2}t. We note that the
sizes of the coefficient vectors vectb,w( f ) and vectb,w(g) of f (x⃗) andg(x⃗) in the digits-wise form are
w× βn,0 andw× βm,0, respectively. Therefore, their inverse mappings digits−1

b,w(·) and vect−1
b,w(·) can

be defined as follows.

digits−1
b,w(a⃗) =

w−1∑
i=0

aib
i , vect−1

b,w(p⃗) = vect−1(digits−1
b,w(p⃗w×βn,0), . . . , digits−1

b,w(p⃗0))

wherea⃗ = {aw−1, . . . ,a1,a0}t ∈ Zw and p⃗ = {p⃗t
w×βn,0
, . . . , p⃗t

0}t ∈ Zw×βn,0, and vect−1(·) is the conven-
tional mapping from the coefficient vector to the polynomial.

We also extend thek-th convolution matrix and the matrix representation of the subresul-
tant mapping to the digits-wise operations in the same manner and denote them byCk,b,w( f )
andSylr,b,w( f ,g), respectively. We note that in general they do not satisfyCk,b,w( f )vectb,w(p) =
vectb,w( f p) for any polynomialp(x⃗) of total degreek − 1, however this is not the matter in our
approach. Moreover, we have vectb,1( f ) = vect(f ), Ck,b,1( f ) = Ck( f ) andSylr,b,1( f , g) = Sylr ( f ,g).

For the digits-wise lattice introduced in the beginning of this section, the carrying and borrow-
ing are important hence we define the following carry-borrow vectorsz⃗b,w,i (i = 0,1, . . . ,w−2) and
matrixZb,w, satisfying digits−1

b,w(⃗zb,w,i) = 0 (i = 0,1, . . . ,w− 2).

z⃗b,w,i = {0, . . . , 0︸  ︷︷  ︸
i

,−1,b,0, . . . , 0︸  ︷︷  ︸
w−i−2

}t ∈ Zw, Zb,w = {⃗zb,w,0 . . . z⃗b,w,w−2}t ∈ Z(w−1)×w.

We also extendL( f ,g, r, c) andH( f ,g, r, c, t, s) as follows and denote them byLb,w( f ,g, r, c) and
Hb,w( f ,g, r, c, t, s), respectively.

Lb,w( f ,g, r, c) =



Eβn−1,r+βm−1,r c · Sylr,b,w( f ,g)t

c · Zb,w

c · Zb,w

. . .

c · Zb,w


,

Hb,w( f ,g, r, c, t, s) =



Eβr+1,0+1
c · vectb,w( f )t c · vectb,w(g)t

c ·Cr+2,b,w(−t)t c ·Cr+2,b,w(s)t

c · Zb,w

c · Zb,w

. . .

c · Zb,w


.

The sizes ofLb,w( f ,g, r, c) andHb,w( f ,g, r, c, t, s) are ((βn−1,r + βm−1,r )+ (w−1)βn+m−1,r )× (βn−1,r +

βm−1,r +wβn+m−1,r ) and (βr+1,0+1+ (w−1)(βn,0+ βm,0))× (βr+1,0+1+w(βn,0+ βm,0)), respectively.

Example 5
We show some examples ofLb,w( f ,g, r, c) andHb,w( f ,g, r, c, t, s) for

f (x) = 32x3 + 56x2 + 32x+ 15 = (4x+ 5)(8x2 + 4x+ 3), t(x) = −8x2 − 4x− 3,
g(x) = 20x3 + 53x2 + 59x+ 30 = (4x+ 5)(5x2 + 7x+ 6), s(x) = 5x2 + 7x+ 6.
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We have the following matrices for the base numberb = 10and lengthw = 2 if we assume that the
order of subresultant mapping is0 andc = 1.

L10,2( f ,g, 0,1) =



1 0 0 0 0 0 3 0 5 9 5 3 2 0 0 0 0 0
0 1 0 0 0 0 0 0 3 0 5 9 5 3 2 0 0 0
0 0 1 0 0 0 0 0 0 0 3 0 5 9 5 3 2 0
0 0 0 1 0 0 1 5 3 2 5 6 3 2 0 0 0 0
0 0 0 0 1 0 0 0 1 5 3 2 5 6 3 2 0 0
0 0 0 0 0 1 0 0 0 0 1 5 3 2 5 6 3 2
0 0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10



,

H10,2( f ,g,0,1, t, s) =



1 0 0 1 5 3 2 5 6 3 2 3 0 5 9 5 3 2 0
0 1 0 0 3 0 4 0 8 0 0 0 6 0 7 0 5 0 0
0 0 1 0 0 0 3 0 4 0 8 0 0 0 6 0 7 0 5
0 0 0 −1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0−1 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0−1 10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10



.

▹

For any fixed non-negative integern, vectb,w(·) and vect−1
b,w(·) can be thought as linear mappings

overZ betweenPn andZw×βn,0 wherePn is a submodule ofZ[ x⃗] defined in the previous section.
However,Pn andZw×βn,0 are not isomorphic by these mappings. We define the quotient module of
Zw×βn,0 by the equivalence relation “⃗f ≡ g⃗ iff vect−1

b,w( f⃗ ) = vect−1
b,w(g⃗)” or its subspace generated by

the row vectors of block diagonal matrix of{Zb,w, . . . ,Zb,w}, and we denote this quotient module
by Zw×βn,0

b,w . By these definitions,Pn is isomorphic toZw×βn,0

b,w by vectb,w(·) and vect−1
b,w(·).

Lemma 6
Let B be a bound of maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗). For
the lattice generated by the row vectors ofLb,w( f ,g, r, cL) with cL = 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2√
βn−1,r + βm−1,r B, the LLL algorithm can find a short vector whose firstβn−1,r +βm−1,r elements are

a multiple of the transpose of the coefficient vectors of cofactors off (x⃗) andg(x⃗) by their GCD, if
r is the greatest integer such that the subresultant mapping is not injective. ▹

Proof There are cofactorst(x⃗) and s(x⃗) of f (x⃗) andg(x⃗) by their GCD, respectively, ifr is the
greatest integer such that the subresultant mapping is not injective. Hence, the lattice generated
by row vectors ofLb,w( f ,g, r, cL) has the following vector⃗umin sinceZw×βn+m−1,r

b,w is isomorphic to
Pn+m−r−1 as shown above.

u⃗min = (the transpose of the coefficient vectors ofs(x⃗) andt(x⃗), 0 · · · 0︸       ︷︷       ︸
w×βn+m−1,r

).
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The LLL algorithm can find a short vectoru⃗ satisfying

∥u⃗∥2≤ 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2 ∥u⃗min∥2 .

Since all the non-zero elements of rightw × βn+m−1,r columns of any row vectors in the lattice
which is generated by the row vectors ofLb,w( f ,g, r, cL) must be larger than or equal tocL =
2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2

√
βn−1,r + βm−1,r B in absolute value, the rightw × βn+m−1,r columns of

the found short vector⃗u must be zeros. This means that the transpose of the vector formed by the
first βn−1,r + βm−1,r elements of⃗u is in the null space ofSylr,b,w( f , g) hence in that ofSylr ( f ,g) and
the lemma is proved.

Lemma 7
Let B be the maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗). For the lattice
generated by the row vectors ofHb,w( f ,g, r, cH , t, s) with cH = 2(βr+1,0+(w−1)(βn,0+βm,0))/2

√
βr+1,0 + 1B

+1, the LLL algorithm can find a short vector whose2-nd, . . ., (βr+1,0+1)-th elements are a multiple
of the transpose of the coefficient vector of the GCD off (x⃗) andg(x⃗), if r is the greatest integer
such that the subresultant mapping is not injective. ▹

Proof The proof is similar to that of Lemma6.

We note that in Lemma7 the short vectors corresponding to the GCD must have±1 on the
first element since this means the number of coefficient vectors off (x⃗) andg(x⃗) reduced by the
coefficient vectors of cofactors. Moreover, this can be thought as the closest vector problem (CVP)
hence it may be possible to use Babai’s nearest plane algorithm ([1]) instead of the method based
on the lattice in Lemma7.

Example 8
For polynomials in Example5, we have the following matrices with the base numberb = 10, length
w = 2, orderr = 0, cL = 9658andcH = 4829if we use the Landau-Mignotte bound off (x) and
g(x).

L10,2( f ,g, 0,9658)=

1 0 0 0 0 0 28974 0 48290 86922· · · 0 0 0 0
0 1 0 0 0 0 0 0 28974 0 · · · 19316 0 0 0
0 0 1 0 0 0 0 0 0 0 · · · 48290 28974 19316 0
0 0 0 1 0 0 9658 48290 28974 19316· · · 0 0 0 0
0 0 0 0 1 0 0 0 9658 48290· · · 28974 19316 0 0
0 0 0 0 0 1 0 0 0 0 · · · 48290 57948 28974 19316
0 0 0 0 0 0 −9658 96580 0 0· · · 0 0 0 0
0 0 0 0 0 0 0 0 −9658 96580 · · · 0 0 0 0
0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0
0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0
0 0 0 0 0 0 0 0 0 0 · · · −9658 96580 0 0
0 0 0 0 0 0 0 0 0 0 · · · 0 0 −9658 96580



,
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H10,2( f ,g, 0,4829, t, s) =

1 0 0 4829 24145 14487 9658 24145· · · 43461 24145 14487 9658 0
0 1 0 0 14487 0 19316 0· · · 33803 0 24145 0 0
0 0 1 0 0 0 14487 0· · · 28974 0 33803 0 24145
0 0 0 −4829 48290 0 0 0· · · 0 0 0 0 0
0 0 0 0 0 −4829 48290 0· · · 0 0 0 0 0
0 0 0 0 0 0 0 −4829 · · · 0 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 0 0 0 · · · 48290 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 −4829 48290 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 −4829 48290



.

By the LLL algorithm we found the following short vectors and in fact their first rows are corre-
sponding to the coefficient vectors of cofactors and GCD off (x) andg(x).

L10,2( f ,g, 0,9658)⇒(
3 4 8 −6 −7 −5 0 0 0 0 · · · 0 0 0 0
−1 2 −2 0 0 1 −28974 0 0 9658· · · −9658 0 −9658 19316

)
,

H10,2( f ,g, 0,4829, t, s)⇒(
1 −5 −4 0 0 0 0 0 · · · 0 0 0 0 0
0 1 −1 0 14487 0 4829 0 · · · 4829 0 −9658 0 −24145

)
.

Note that 1) we show only the first and second shortest short vectors found though there are more
short vectors that are not corresponding to approximate cofactors and GCD, and 2) the LLL algo-
rithm can find the expected short vectors with much smallercL andcH in most cases. In fact, short
vectors in this example can be computed fromL10,2( f ,g, 0,10) andH10,2( f ,g,0,10, t, s). ▹

3.2 Algorithm in Digits-wise Representation

We consider the case introduced in the beginning of this section hence we assume that all the
coefficients have a priori errors on only the limited number of digits. For such polynomials, the
resulting toleranceε defined in Definition1 easily becomes large even though the norm of errors
in the digits-wise representation is small. We need to adapt the definition to the digits-wise rep-
resentation. By the following definition, we have digits-wise tolerancesε10,1 = ε = 20, ε10,2 = 2
and ε5,2 = 4 in the∞-norm for the pair off (x) = (4x + 5)(8x2 + 4x + 3) + 20x2 − 10x and
g(x) = (4x+ 5)(5x2 + 7x+ 6)− 10x3 + 10 for example.

Definition 9 (Digits-wise Approximate Polynomial GCD Over Integers)
Let f (x⃗) andg(x⃗) be polynomials in variables⃗x = x1, . . . , xℓ overZ, and letε be a small positive
integer. If they satisfyf (x⃗) = t(x⃗)h(x⃗)+∆ f (x⃗), g(x⃗) = s(x⃗)h(x⃗)+∆g(x⃗) andεb,w = max{∥vectb,w(∆ f )∥
, ∥vectb,w(∆g)∥} for some polynomials∆ f ,∆g ∈ Z[ x⃗], then we say that the above polynomialh(x⃗)
is andigits-wise approximate GCD over integersw.r.t. the base numberb and lengthw. We also
say thatt(x⃗) and s(x⃗) aredigits-wise approximate cofactors over integers, and we say that their
tolerance is εb,w. ( ∥p∥ denotes a suitable vector norm.) ▹

For computing digits-wise approximate GCD over integers, the lemmas introduced above do
not guarantee that we can find the coefficient vectors of approximate cofactors and approximate
GCD by the LLL algorithm. However, as same as the algorithms in [18], the short vectors found
have a possibility that corresponding polynomialst(x⃗) ands(x⃗) ∈ Z[ x⃗] satisfys(x⃗) f (x⃗)+ t(x⃗)g(x⃗) ≈
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0, and they can be candidate approximate cofactors. Moreover, in the digits-wise representation,
we have to distinguish correct digits from erroneous digits in the digits-wise lattice. We define the
following diagonal weight matrixWb,w(kid, kc f , c,E, cE) to distinguish them.

Wb,w(kid, kc f , c,E, cE) = diag(1, . . . , 1︸  ︷︷  ︸
kid

w⃗, . . . , w⃗︸   ︷︷   ︸
kc f

), w⃗ = {cw−1, . . . , c0}, ci =

{
cE (i ∈ E)
c (i < E)

where we assume that the coefficients have a priori error on thei-th digits in the baseb representa-
tion for anyi ∈ E ⊂ Z>0, andc andcE are penalty weights that force the LLL algorithm to reduce
more correct digits (columns) than other digits and reduce more erroneous digits than coefficient
digits of candidate factors, respectively in the lattice basis. With this diagonal weight matrix, we
define the following matrices that are based onLb,w( f ,g, r,1) andHb,w( f ,g, r,1, t, s), respectively.

L̃b,w( f ,g, r, c,E, cE) = Lb,w( f ,g, r,1)Wb,w(βn−1,r + βm−1,r ,wβn+m−1,r , c,E, cE),
H̃b,w( f ,g, r, c, t, s,E, cE) = Hb,w( f ,g, r,1, t, s)Wb,w(βr+1,0 + 1,w(βn,0 + βm,0), c,E, cE).

Lemma 10
Let B be the maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗) with perturba-
tions. For the lattice generated by the row vectors ofL̃b,w( f ,g, r, cL̃,E, cE) with the followingcL̃,
the LLL algorithm can find a short vector whose firstβn−1,r + βm−1,r elements are a multiple of the
transpose of the coefficient vectors of candidate approximate cofactors off (x⃗) andg(x⃗).

cL̃ = 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2
√

(βn−1,r + βm−1,r )B2 + (#E × βn+m−1,r )(b− 1)2c2
E

where#E is the number of elements inE. ▹

Proof Let t(x⃗) and s(x⃗) be one of candidate approximate cofactors off (x⃗) and g(x⃗), respec-
tively, satisfying∥ vectb,w(s(x⃗) f (x⃗) + t(x⃗)g(x⃗)) ∥≈ 0. In this case, the lattice generated by rows
of L̃b,w( f ,g, r, cL̃,E, cE) has the following vector⃗ucac for some integerr.

u⃗cac = (the transpose of the coefficient vectors ofs(x⃗) andt(x⃗), ∗ · · · ∗︸      ︷︷      ︸
w×βn+m−1,r

)

where all the correct digits are 0 on the rightw × βn+m−1,r elements denoted by∗. The shortest
vector of this lattice must be smaller than or equal tou⃗cac hence the LLL algorithm can find a short
vectoru⃗ satisfying

∥u⃗∥2 ≤ 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2 ∥u⃗cac∥2
≤ 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2

√
(βn−1,r + βm−1,r )B2 + (#E × βn+m−1,r )(b− 1)2c2

E

since the leftβn−1,r + βm−1,r elements of⃗ucac are bounded byB and the erroneous digits on the right
w× βn+m−1,r elements of⃗ucac are bounded by (b− 1)cE.

Therefore, all the correct digits on the rightw × βn+m−1,r elements of the found short vectoru⃗
must be zeros since all the non-zero correct digits on the rightw× βn+m−1,r elements of row vectors
in the lattice generated by the row vectors ofL̃b,w( f ,g, r, cL̃,E, cE) are larger than or equal tocL̃
in absolute value. This means that the polynomialst(x⃗) ands(x⃗) whose coefficient vectors are the
first βn−1,r + βm−1,r elements of⃗u satisfy

∥all the correct digits of vectb,w(s(x⃗) f (x⃗) + t(x⃗)g(x⃗))∥= 0

hence they are candidate approximate cofactors off (x⃗) andg(x⃗) though we may not guarantee
∥vectb,w(s(x⃗) f (x⃗) + t(x⃗)g(x⃗))∥≈ 0.
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Lemma 11
Let B be the same maximum in Lemma10. For the lattice generated by the row vectors of
H̃b,w( f ,g, r, cH̃ , t, s,E, cE) with the followingcH̃ , the LLL algorithm can find a short vector whose
2-nd, . . ., (βr+1,0 + 1)-th elements are a multiple of the transpose of the coefficient vector of a
candidate approximate GCD off (x⃗) andg(x⃗).

cH̃ = 2(βr+1,0+1+(w−1)(βn,0+βm,0)−1)/2
√

(βr+1,0 + 1)B2 + (#E × (βn,0 + βm,0))(b− 1)2c2
E

where#E is the number of elements inE. ▹

Proof The proof is similar to that of Lemma10.

In general, there are short vectors that are not corresponding to approximate cofactors nor
approximate GCD with small perturbations (small tolerance) hence the above lemmas can not
guarantee that our algorithm always can find such a good approximate GCD. However, in most
cases, according to our numerical experiment in Section4, the following algorithm works well,
in which we usecE =

√
βn−1,r + βm−1,r B and cE =

√
βr+1,0 + 1B for L̃b,w( f , g, r, c,E, cE) and

H̃b,w( f ,g, r, c, t, s,E, cE), respectively. We again note thatcE is a scaling weight to make the LLL al-
gorithm do reducing more erroneous digits than coefficient digits of candidate cofactors and GCD,
as in the proofs of Lemma6 and Lemma10.

Algorithm 12 (digits-wise approximate GCD over integers)
Input : f ,g ∈ Z[ x⃗],n = tdeg(f ),m= tdeg(g), b,w ∈ Z>0, E ⊂ {0,1, . . . ,w− 1}.
Output : h, t, s ∈ Z[ x⃗] satisfying f (x⃗) ≈ t(x⃗)h(x⃗) andg(x⃗) ≈ s(x⃗)h(x⃗), or “not found”.
1. ε← 1 and whileε < min{∥vectb,w( f )∥, ∥vectb,w(g)∥} do2–14

(or do once for the possible smallestε)
2. r ← min{n,m} − 1 and whiler ≥ 0 do3–13(or do once forr = 0)
3. c← max{∥ f ∥, ∥g∥} and construct a matrix̃Lb,w( f ,g, r, c,E, cE)
4. while c ≤ cL̃ do5–12(or do once forc = max{∥ f ∥, ∥g∥})
5. apply the LLL algorithm to the lattice generated by the row vectors of

L̃b,w( f ,g, r, c,E, cE)
6. for each basis vector sorted by the norm of rightwβn+m−1,r columns, do7–11
7. c′ ← max{∥ f ∥, ∥g∥} and construct a matrix̃Hb,w( f ,g, r, c, t, s,E, cE)
8. while c′ ≤ cH̃ do9–11(or do once forc′ = max{∥ f ∥, ∥g∥})
9. apply the LLL algorithm to the lattice generated by the row vectors of

H̃b,w( f ,g, r, c, t, s,E, cE)
10. let h(x⃗), t(x⃗), s(x⃗) be candidate approximate GCD and cofactors,

and outputh(x⃗), t(x⃗), s(x⃗) if max{∥vectb,w( f − th)∥, ∥vectb,w(g− sh)∥} ≤ ε
11. c′ ← c′ ×max{∥ f ∥, ∥g∥} (or multiply some positive integer)
12. c← c×max{∥ f ∥, ∥g∥} (or multiply some positive integer)
13. r ← r − 1
14. ε← ε × 10 (or multiply/add some positive integer)
15. output “not found”.

Example 13
Algorithm 12works for polynomialsf (x1, x2) andg(x1, x2) below as follows.

f (x1, x2) = 15336x2
1 − 3651x1x2 − 11673x1 − 1271x2

2 + 11618x2 − 15979,
g(x1, x2) = 23184x2

1 − 15094x1x2 + 53046x1 + 2425x2
2 − 19493x2 + 26112.
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We assume that these polynomials have a priori errors on their3rd (42) and 4th (43) digits of
coefficients in the baseb = 4 representation (note:log4(max{∥ f ∥∞, ∥ g ∥∞}) ≈ 7.85). By the
algorithm, we reduce the lattice generated by the row vectors of the following matrix of size76×86
with cL̃ = 6986206386174202099andcE = 2671636.

L̃4,8( f ,g,0, cL̃, {2,3}, cE) =

1 0 0 0 0 0 6986206386174202099 139724...48404198· · · 0
0 1 0 0 0 0 0 0 · · · 0
0 0 1 0 0 0 0 0 · · · 0
0 0 0 1 0 0 0 −209586...22606297· · · 0
0 0 0 0 1 0 0 0 · · · 0
0 0 0 0 0 1 0 0 · · · 0
0 0 0 0 0 0−6986206386174202099 279448...96808396· · · 0
0 0 0 0 0 0 0 −69862...74202099· · · 0
0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 0 · · · 0
...
...
...
...
...
...

...
...
. . .

...
0 0 0 0 0 0 0 0 · · · 27944825544696808396



.

We found the following short vectors that are sorted by the norm of right columns.
313 −41 −213 512−71 322 0 0 0 0 −320596320 −85492352 0 0· · · 0
165 −21 −113 272−43 170 0 0 0 0 −1485429616−371357404 0 0· · · 0
295 −39 −203 480−73 302 0 0 0 0 1301086732 325939592 0 0· · · 0
...

...
...
...

...
...
...
...
...
...

...
...
...
...
. . .
...

 .
We construct the following matrix of size88 × 100 for the first short vector in the step9 with
cH̃ = 399729686425627882725andcE = 2181382.

H̃4,8( f ,g,0, cH̃ , t, s, {2,3}, cE) =

1 0 0 0 0 −119918...83648175· · · 0
0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · −799459372851255765450
0 0 0 0−399729686425627882725 159891...11530900· · · 0
0 0 0 0 0 −39972...27882725· · · 0
0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0
...
...
...
...

...
...
. . .

...
0 0 0 0 0 0 · · · 1598918745702511530900



.

We found the following short vectors that are sorted by the norm of right columns. We show only
short vectors having±1 on their first elements as noted just after Lemma7.

1 51 −31 72 0 0 0 0 0 −2181382 0 · · · 0
1 51 −27 72 0 0 0 0 0 −2181382 0 · · · 0
1 51 −29 72 0 0 0 0 0 −2181382 0 · · · 0
1 49 −31 72 0 0 0 0 −19632438−8725528−399729686425627882725· · · 0

 .
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Hence, we get213x1+41x2−313and322x1−71x2+512as approximate cofactors,72x1−31x2+51
as an approximate GCD off (x1, x2) andg(x1, x2), andε4,8 =

√
38 ≈ 6.16 in the Euclidean norm.

Moreover, the perturbation polynomials are(3× 42 − 43)+ (−3× 42 − 2× 43)x2 and(−3× 42 − 3×
43)x1 + (2× 42 + 3× 43)x2

2. ▹

Example 14
Though the discussions above and Algorithm12 are only for the case of two polynomials, it is
easy to extend them to several polynomials, using the generalized subresultant mapping (see also
[25],[18]). We show some example of the case of three polynomials below as follows.

f (x1, x2) = 23112x2
1 − 6999x1x2 − 6117x1 − 1271x2

2 + 11730x2 − 15963,
g(x1, x2) = 2304x2

1 − 6104x1x2 + 38432x1 + 2201x2
2 − 19493x2 + 26224,

h(x1, x2) = −3744x2
1 + 24724x1x2 + 6060x1 − 9951x2

2 + 12700x2 + 6139.

We assume that these polynomials have a priori errors on their2nd (161) digits of coefficients in
the baseb = 16representation (note:log16(max{∥ f ∥∞, ∥g∥∞, ∥h∥∞}) ≈ 3.81). We construct a matrix
of size69× 89 which is similar toL̃b,w( f ,g, r, cL̃,E, cE) with cL̃ = 2816708953910864585and
cE = 2443811and found the following short vectors that are sorted by the norm of right columns.

−313 41 321−512 71 −32 −121 −321 52 0 0 −5354389901· · · 0
496 −64 −512 816−112 48 192 512−80 0 0 −2856815059· · · 0
−205 29 213−336 51 −16 −77 −213 36 0 0 −1886622092· · · 0
...

...
...

...
...

...
...

...
...
...
...

...
. . .
...

 .
For the first short vector found, corresponding to candidate three cofactors, we construct a matrix
of size58× 76 which is similar toH̃b,w( f ,g, r, cH̃ , t, s,E, cE) with cH̃ = 39365206313183407and
cE = 1629208and found the following short vectors that are sorted by the norm of right columns.
−1 51 −31 72 0 0 0 0 0 0 6516832 0 0 0 0 0 0 0−4887624 0 0 0 0 0 0 0 0 0· · · 0
−1 51 −31 72 0 0 0 0 0 0 6516832 0 0 0 0 0 0 0−4887624 0 0 0 0 0 0 0 0 0· · · 0
−1 51 −31 72 0 0 0 0 0 0 6516832 0 0 0 0 0 0 0−4887624 0 0 0 0 0 0 0 0 0· · · 0
...
...

...
...
...
...
...
...
...
...

...
...
...
...
...
...
...
...

...
...
...
...
...
...
...
...
...
...
. . .
...

 .
Hence, we get321x1 + 41x2 − 313, 32x1 − 71x2 + 512and−52x1 + 321x2 + 121as approximate
cofactors,72x1−31x2+51as an approximate GCD off (x1, x2), g(x1, x2) andh(x1, x2), andε16,4 =√

65≈ 8.06in the Euclidean norm. Moreover, the perturbation polynomials are3×161x1−4×161x2,
−4× 161x1 + 7× 161 and5× 161x2 − 2× 161. ▹

4 Remarks

To see the efficiency of Algorithm12, we have generated several sets of 100 pairs of polynomials:
A pair of bivariate polynomials of total degree randomly chosen from [2,6], having their GCD
of total degree randomly chosen from [1,3], coefficients of their factors randomly chosen from
[−100,100] and added noise bivariate polynomials of the same total degree, whose coefficients are
randomly chosen from [−9,9] × 10k but 0 atα probability, for randomly chosen erroneous digitk
within the coefficient size. For example, the following pair of polynomials is one of them (α = 0.0
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andk = 4).

(−85x3
1 + 21x2x2

1 + 88x2
1 + 18x2

2x1 − 99x2x1 + 17x1 + 95x3
2 − 49x2

2 − 89x2 − 96)
×(46x1 + 92x2 + 47)+ (8× 104x4

1 + 1× 104x2x3
1 − 1× 104x3

1 + 4× 104x2x2
1

−7× 104x2
1 − 6× 104x3

2x1 + 8× 104x2
2x1 − 6× 104x2x1 − 8× 104x1

−5× 104x4
2 − 7× 104x3

2 + 7× 104x2
2 + 7× 104x2 − 6× 104),

(−85x3
1 + 21x2x2

1 + 88x2
1 + 18x2

2x1 − 99x2x1 + 17x1 + 95x3
2 − 49x2

2 − 89x2 − 96)
×(−80x1 + 83x2 + 62)+ (−8× 104x4

1 + 7× 104x2x3
1 + 5× 104x3

1 + 9× 104x2
2x2

1
−6× 104x2x2

1 − 5× 104x2
1 + 8× 104x3

2x1 + 4× 104x2
2x1 − 9× 104x2x1

−4× 104x1 + 5× 104x4
2 − 2× 104x3

2 + 6× 104x2
2 − 9× 104x2).

We have computed their approximate GCDs by the algorithm withε = 10 in the step1, r = 0 in
the step2 andcL̃ = cH̃ = 1010 andcE = 105 in the steps3 and7. Note that all the experiments have
been computed by our preliminary implementation on Mathematica 8.0, and we use the max norm
for polynomials. Table1 shows the results where “#success” denotes the number of pairs for which
we got the expected digits-wise approximate polynomial GCD over integers and “#failure” denotes
otherwise. According to the result, our algorithm works well for most of pairs of polynomials.
However, the computation time is not good since the time-complexity of the lattice basis reduction
is heavily depending on the number of bases that is the number of rows of matrices in our algorithm.
Therefore, our algorithm works well but any faster algorithm is required to be used in the practical
situation.

probabilityα 0.75 0.5 0.0
1st set 2nd set 1st set 2nd set 1st set 2nd set

#success:#failure 99:1 99:1 93:7 96:4 97:3 91:9

Table 1:The result of our experiments

Although we consider about only polynomials over integers in this paper, the digits-wise repre-
sentation can be extended to polynomials over reals or complexes. For example, we can construct
the Sylvester matrix of the given polynomials over reals in the digits-wise representation: dividing
mantissae of coefficients into several elements if the given polynomials do not have both of small
and large exponential parts. This may help us to treat erroneous coefficients having errors on only
higher bits and should be studied as a further work.

The preliminary implementation on Mathematica 8.0, of our algorithm introduced in this paper
with some examples can be found at the following URL:http://wwwmain.h.kobe-u.ac.jp/
~nagasaka/research/snap/snc2011plus.nb.
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