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Abstract

A Sudoku puzzle is a worldwide popular game, and is also an interesting object in combina-
torics and computer algebra. Recently, Inoue applied his excellent algorithm on finding the
singleton set solutions of a system of Boolean polynomial equations to the solution of the puz-
zles of Sudoku type. Further, by means of his algorithm, we have defined the Inoue invariant
of puzzles of Sudoku type, which measures the mathematical difficulty of them.

The purpose of this note is study the Inoue invariants of the easier puzzles of Sudoku type,
namely, 4-doku, diagonal 5-doku and diagonal 6-doku puzzles. Our main results show that
all the 4-doku and diagonal 5-doku puzzles (with a unique solution) have the trivial Inoue
invariant (2,1,1) except 2 puzzles, whereas there exist many diagonal 6-doku puzzles with a
non-trivial, big Inoue invariant.

1 Introduction

A Sudoku puzzleis a very popular game played by everybody in the world. Recently, numerous
researches have been done on the mathematical (combinatorial) structure of Sudoku (see, for in-
stance, the book [7] and references in it). Among them, Sato, Inoue and others [9, 10] studied it by
means of Boolean Groebner bases.

Quite recently, Inoue [3] obtained an excellent method for finding the singleton set solutions
of a system of Boolean polynomial equations. He also applied his algorithm to Sudoku and ob-
served that relatively easy Sudoku puzzles can be solved without branches (namely without "else"
procedure in Algorithm 34 of [3]).
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Stimulated by his observation, we went one step further and definedthe Inoue invariantof
puzzles of Sudoku type as follows ([5]). The performance of Inoue’s algorithm for a Boolean
polynomial ideal is well described by a tree diagram and we have defined the Inoue invariant of
such an ideal as the triple of the basic numbers of this tree. We discovered that, in the case of
those ideals arising from the puzzles of Sudoku type, this invariant is an excellent indicator of
the difficulty of the puzzles by experiments. Thus we have defined the mathematical difficulty
of the puzzles of Sudoku type as the Inoue invariant of their ideals. For example, in the case of
Sudoku, the easier puzzles up to the middle level have the trivial Inoue invariant (2,1,1), whereas
the difficult ones have a non-trivial Inoue invariant. As far as we know, the biggest Inoue invariant
so far is (964, 558,13), which is achieved by a 20-clues puzzle.

In this note, we study the Inoue invariants of the simpler puzzles of Sudoku type, namely 4-
doku and the diagonal 5-doku. We computed many examples of them and got a conjecture that all
the 4-doku and diagonal 5-doku puzzles with a unique solution have the the trivial Inoue invariant
(2,1,1). The purpose of this note is to give an answer to this conjecture. Our main results are
summarized as follows.

Theorem 1 (Inoue invariants of 4-doku)
All the 4-doku puzzles with a unique solution have the trivial Inoue invariant(2,1,1).

Theorem 2 (Inoue invariants of diagonal 5-doku)
(i) There exist exactly 30964554720 diagonal 5-doku puzzles with a unique solution.
(ii) They all have the trivial Inoue invariant(2,1,1) except the 2 puzzlesWi (i = 1,2), both of
which have the Inoue invariant(4,2,2) (see Table 5 in Section 5 forWi , i = 1,2).

Thus our conjecture is false in the case of the diagonal 5-doku puzzles，but we discovered 2
special puzzlesWi (i = 1,2) with a non-trivial Inoue invariant. We also report a partial result on the
Inoue invariants of the diagonal 6-doku puzzles, which shows that the there exist many diagonal
6-doku puzzles with a non-trivial, big Inoue invariant.

The contents of this note are as follows. In Section 2, we review Boolean Groebner bases,
especially the stratified Boolean Groebner bases. In section 3, we summarize Inoue’s algorithm
and the Inoue invariants after [3, 5]. In section 4, we formulate the rules of puzzles of Sudoku type
by a system of Boolean polynomial equations following [9, 10], and we report our main results
in Section 5. In Appendix [6], which is separated from the main body of this note and put in our
website, we summarize the detailed data and the programs used in the proof of our main results.

For the implementation of Inoue’s algorithm, we have used the computer algebra system Magma
[1].
Acknowledgment: we thank the referee for pointing out and correcting a critical mistake in the first
version of this note.

2 Boolean Groebner Bases

In this section, we will briefly review the Groebner bases of ideals in the polynomial ring over a
Boolean ring and the Boolean Groebner bases of ideals in a Boolean polynomial ring. For more
details on Boolean Groebner bases, see [8, 9, 10, 11].

Let B be a Boolean ring. Namely,B is a commutative ring with an identity such that any
elementa ∈ B satisfiesa2 = a. For example, for a natural numberm, (F2)m is a finite Boolean
ring, whereF2 := Z/2Z is the field with 2 elements, and the addition and multiplication in (F2)m

are defined componentwise. Conversely, any finite Boolean ring is isomorphic to (F2)m for somem
by the Stone representation theorem.
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Let B[x] = B[x1, . . . , xn] be the polynomial ring overB with n indeterminates with a given
monomial order. For the notation on polynomials, we follow [2] as below.

Notation 3
(i) LM( f ) (resp. LT( f ), LC( f ), mdeg(f ))) is the leading monomial (resp. the leading term, the
leading coefficient, the multidegree) of a polynomialf so thatLT( f ) = LC( f )·LM( f ) andLM( f ) =
xmdeg(f ) hold.
(ii) For monomialsxα andxβ, xα | xβ means thatxα dividesxβ.

We first show the division algorithm inB[x].

Theorem 4 (Division algorithm)
Given a polynomialf and an ordered set ofs polynomialsF := ( f1, . . . , fs) in B[x], we get an ex-
pression of the formf = a1 f1+ · · ·+as fs+ r, where(a1, . . . ,as) is the quotient andr the remainder,
by the following algorithm:
Algorithm variables:p (intermediate dividend),B = (b1, . . . ,bs) (intermediate quotient),r (inter-
mediate remainder).
Initial values:p := f , B := (0, . . . ,0), r := 0.
(i) If there existsi such thatLM( fi) | LM( p) andLC(p) · LC( fi) , 0, then take the least suchi and
redefinep := p− LC(p) · LM( p)

LM( fi )
· fi andbi := bi + LC(p) · LM( p)

LM( fi )
(division step).

(ii) If there exists noi such thatLM( fi) | LM( p) andLC(p)·LC( fi) , 0, then redefinep := p−LT(p)
andr := r + LT(p) (remainder step).
This algorithm terminates (namelyp = 0) in a finite number of steps and yields an expression of
division

f = a1 f1 + · · · + as fs + r,

wherer satisfies the condition of the remainder:r = 0 or in caser , 0, any termt of r satisfies
eitherLM( fi) - LM( t) or LC(t) · LC( fi) = 0 in caseLM( fi) | LM( t) for any i. Furthermore, if
ai fi , 0 thenmdeg(ai fi) ≤ mdeg(f ) holds.

This division algorithm inB[x] is quite similar to that in the polynomial ring over a field,
except that one additional condition (the product of coefficients is not equal to 0) is necessary for
the division step to occur.

For an idealI ⊂ B[x], we denote by LT(I ) the set of the leading terms of the elements (except
0) in I . We now define a Groebner basis of an ideal inB[x].

Definition 5 (Groebner bases)
Let I ⊂ B[x] be an ideal andG := {g1, . . . ,gs} ⊂ I a finite subset ofI . We sayG is a Groebner
basisof I if ⟨LT(I )⟩ = ⟨LT(g1), . . . ,LT(gs)⟩.

Based on the division algorithm, most of the results in [2, Chapter 2] hold with suitable modifi-
cations. Especially, the Buchberger criterion and algorithm hold (with slight modifications) so that
we can obtain a Groebner basis of a finitely generated ideal by the Buchberger algorithm.

We next define reduced and stratified Groebner bases respectively. We denote byf
F

the re-
mainder of the division off by F.

Definition 6 (Reduced Groebner bases)
Let G be a Groebner basis of an idealI . G is calledreducedif gG\{g}

= g holds for anyg ∈ G.

Reduced Groebner bases are not unique as shown in the following example.
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Example 7
In the polynomial ring(F2)2[x] of one variable,{(1,0)x, (0,1)x} and {(1,1)x} are both reduced
Groebner bases of the same idealI = ⟨x⟩.

Definition 8 (Stratified Groebner bases)
Let G ⊂ I be a reduced Groebner basis.G is calleda stratified Groebner basisif LM( f ) , LM(g)
for any f ,g ∈ G, f , g.

Proposition 9 (Stratification algorithm)
Let G ⊂ I be a reduced Groebner basis. DivideG into several groupsG1, . . . ,Gt according to
leading monomials, where each member of a group has the same leading monomial and different
groups have different leading monomials:G = G1 ∪ · · · ∪Gt (disjoint union). For each groupGi ,
sethi :=

∑
g∈Gi

g. ThenG′ := {h1, . . . ,ht} is a stratified Groebner basis ofI .

The following is the main theorem of the Groebner bases.

Theorem 10 (Existence and uniqueness of the stratified Groebner bases)
Fix a monomial order onB[x]. For a given finitely generated idealI ⊂ B[x], a stratified Groebner
basis exists and it is determined byI uniquely.

For the actual computation of the stratified Groebner bases in the case ofB = (F2)m, we use the
"componentwise" method explained below. We first prepare some notations.

Consider the natural isomorphism (F2)m[x] � (F2[x])m and letπi : (F2[x])m → F2[x] be the
projection to thei-th component. For anyf ∈ (F2)m[x], we set fi := πi( f ) ∈ F2[x] and call it the
i-th component off . Then the isomorphism (F2)m[x] � (F2[x])m is given as (F2)m[x] ∋ f ←→
( f1, . . . , fm) ∈ (F2[x])m. For an idealI ⊂ (F2)m[x], we setI i := { fi | f ∈ I } ⊂ F2[x] and call this the
i-th component ideal ofI .

The algorithm is based on the following theorem:

Theorem 11
Fix a monomial order on(F2)m[x] and let I ⊂ (F2)m[x] be an ideal. For anyi (1 ≤ i ≤ m),
let I i ⊂ F2[x] be thei-th component ideal ofI andGi the reduced Groebner basis ofI i . Then
G := (G1,0 . . . , 0)∪ (0,G2,0, . . . ,0)∪ · · · ∪ (0, . . . ,0,Gm) is a reduced Groebner basis ofI , where
(G1,0, . . . ,0) = {(g,0, . . . , 0) | g ∈ G1} etc..

Thus we can compute the stratified Groebner basis ofI by Theorem 11 followed by the strati-
fication process (Proposition 9).

We now turn to the Boolean Groebner bases. SinceB[x] itself is not a Boolean ring, we set

B(x) = B(x1, . . . , xn) := B[x1, . . . , xn]/⟨x2
1 − x1, . . . , x

2
n − xn⟩.

B(x) is a Boolean ring and we call itthe Boolean polynomial ringoverB with n indeterminates. A
monomialxα1

1 . . . x
αn
n is calleda Boolean monomialif αi ∈ {0,1} for any i. We note anyf ∈ B(x)

can be written uniquely as
∑

k ckxβk whereck ∈ B andxβk is a distinct Boolean monomial, which
we call the canonical representation of f. Given a monomial order onB[x] and f ∈ B(x), we can
define LT(f ),LM( f ) and LC(f ) using the canonical representation off .

Definition 12 (Boolean Groebner bases)
Let I ⊂ B(x) be an ideal andG := {g1, . . . , gs} ⊂ I a finite subset ofI . We sayG is a Boolean
Groebner basis(a BG basis for short) ofI if ⟨LT(I )⟩ = ⟨LT(g1), . . . ,LT(gs)⟩.
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The division algorithm (Theorem 4) works also inB(x) and we can define reduced and stratified
BG bases as in Definition 6 and 8. Then the existence and uniqueness of the stratified BG bases
hold too. We abbreviate the stratified BG bases asthe SBG basesin the following sections.

We can compute a BG basis of the idealI = ⟨F⟩ ⊂ B(x) as follows. Compute a Groebner basis
G of ⟨F ∪ {x2

1 − x1, . . . , x2
n − xn}⟩ in B[x]. ThenG′ := G \ {x2

1 − x1, . . . , x2
n − xn} is a BG basis ofI .

Furthermore, ifG is stratified, thenG′ is also stratified. We note that the componentwise method
(Theorem 11) also works for the BG bases.

We finally refer to the Boolean Hilbert Nullstellensatz. For an idealI ⊂ B(x), letV(I ) := {a ∈
Bn | f (a) = 0 for any f ∈ I } be the affine variety defined byI .

Theorem 13 (Boolean Hilbert Nullstellensatz)
Let I ⊂ B(x) be a finitely generated ideal. Then the following assertions hold.
(i) V(I ) = ϕ if and only if I contains a non-zero constant.
(ii) AssumeV(I ) , ϕ. Then f (x) ∈ I if and only if f (a) = 0 for anya ∈ V(I ).

3 The Inoue algorithm and the Inoue invariants

In this section, we will briefly review the Inoue algorithm and the Inoue invariants ([3, 5]). The
Inoue algorithm is an excellent and almost canonical method for computing the singleton set solu-
tions of a system of Boolean polynomial equations.

We work in the Boolean polynomial ring (F2)m(x) = (F2)m(x1, . . . , xn). For an idealI ⊂
(F2)m(x), we set

VS(I ) := {(a1, . . . ,an) | ai ∈ {e1, . . . , em}, f (a1, . . . ,an) = 0 for any f ∈ I },

whereei := (δi j ) j=1,...,m. VS(I ) is the set of singleton set solutions and we would like to compute
this set.

The Inoue algorithm is based on the conceptalmost solution polynomialscontained in the ideal.
In the following, we setE :=

∑m
i=1 ei = 1(F2)m.

Definition 14 (Solution polynomial)
We call f ∈ (F2)m(x) of the form f := E · x j + ek = x j + ek for somej, k a solution polynomial.

We note that for a solution polynomialf := x j + ek, f = 0 is equivalent tox j = ek. We next
define an almost solution polynomial.

Definition 15 (Almost solution polynomial)
(i) A polynomial f (x) ∈ (F2)m(x) is calledan almost solution polynomial of type 1(ASP of type 1
for short) if there existj, k such thatek · f (x) = ek · x j + ek (namely, fk(x) = x j + 1 where fk is the
k-th component off ). We callSol(f ) := x j + ek the solution polynomial associated to the ASP f.
We require a solution polynomial to be excluded from the ASP’s of type 1.
(ii) A polynomial g(x) ∈ (F2)m(x) is calledan ASP of type 2if there existj, k such thatet ·g = et · x j

for any t exceptk (namely,gt(x) = x j for any t exceptk). We callSol(g) := x j + ek the solution
polynomial associated to g. We require a solution polynomial to be excluded from the ASP’s of
type 2.

Supposef is an ASP of type 1 with its solution polynomial Sol(f ) = x j + ek. Then f = 0
implies that thek-th component of the variablex j is 1. Thusx j must be equal toek since we are
computingVS(I ). But note thatf = 0 is not equivalent tox j = ek. A similar reasoning holds for
ASP of type 2.

We prepare some notations for the Inoue algorithm.
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Notation 16
Let I ⊂ (F2)m(x) be an ideal.
(i) CONST(I ) := the set of non-zero constants contained inI .
(ii) SP(I ) := the set of solution polynomials contained inI . For a variablex j , if a solution polyno-
mial f = x j +ek is contained inSP(I ), then we say the variablex j is determined (with the valueek).
(iii) ASP(I ):= the set of ASP’s (of type 1 or 2) inI .
(iv) Sol(ASP(I )) := {Sol(f ) | f ∈ AS(I )} = the set of solution polynomials associated to ASP’s
contained inI .

The following algorithm ASPTransform is the main part of the Inoue algorithm.

Algorithm 17 (ASPTransform)
Let I be an ideal (Input).
(i) If CONST(I ) , ϕ, then the output ASPTransform(I ) is I .
(ii) If CONST(I ) = ϕ, then redefineI := I + ⟨Sol(ASP(I ))⟩. Namely, add toI all the solution
polynomials associated to the ASP’s inI . Then go to (i) again.
(iii) Repeat this process untilCONST(I ) , ϕ or ASP(I ) = ϕ, and the output ASPTransform(I ) is I .

Now we can state the Inoue algorithm.

Algorithm 18 (The Inoue algorithm)
Fix a linear order on the set of variables{x1, . . . , xn} (not a monomial order). LetI ⊂ (F2)m(x) be
an ideal (input). SetL := {} (empty set). We will put a singleton set solution inL in order.
(i) If CONST(I ) , ϕ, then setL := L ∪ {}.
(ii) If CONST(I ) = ϕ, then redefineI := ASPTransform(I ).
(iii) If CONST(I ) , ϕ, thenL := L ∪ {}. If CONST(I ) = ϕ , we have 2 cases. (a) IfSP(I ) consists
of n solution polynomials (namelyI = ⟨x j + ejk | j = 1, . . . ,n⟩ ) so that all the variables are
determined, thenL := L∪ {SP(I )} (this is a solution). (b) Else letx j be the least variable among the
undetermined ones and{ek1, . . . ,ekp} the possible values ofx j . Hereekl is a possible value ofx j if
and only ifCONST(I + ⟨x j + ekl ⟩) = ϕ. For eachl (1 ≤ l ≤ p), redefineI := I + ⟨x j + ekl ⟩ and go to
(ii).
(iv) The final outputInoue(I ) = L.

The following theorem makes it possible to rephrase the Inoue algorithm in terms of SBG bases
instead of ideals.

Theorem 19
Let I be an ideal in(F2)m(x) andG its SBG basis for a given monomial order. In the assertions (ii),
(iii) below, we assumeI does not contain non-zero constants.
(i) For a non-zero constantc ∈ (F2)m, c ∈ I if and only if c ∈ G.
(ii) For a solution polynomialf , f ∈ I if and only if f ∈ G.
(iii) If an ASP g is in I , then there exists an ASPg′ ∈ G such thatSol(g) = Sol(g′).

The assertion (iii) of Theorem 19 above is the main result (Theorem 31) of [3]. By Theorem
19, we can rephrase the Inoue Algorithm in terms of SBG bases instead of ideals. Namely, just
replace the idealI by its SBG basisG in Algorithms 17 and 18.

For the actual implementation of this algorithm, we also need the explicit classification of
ASP’s contained in an SBG basis (see [5, Corollary 3.9]). Inoue has implemented his algorithm on
the computer algebra system Risa/Asir, whereas we have implemented it on the computer algebra
system Magma [1].

We next define the Inoue invariant of an idealI ⊂ (F2)m(x). The performance of the Inoue
algorithm is well described by a tree diagram defined as below.
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Definition 20 (Inoue Invariant)
Let I be an ideal and perform the Inoue algorithm starting fromI . We will construct a tree Tree(I )
of I as follows:
(i) I is the first node (root).
(ii) When the algorithm ASPTransform stops, we have a second node.
(iii) There are three cases. (a) If at this nodeCONST(I ) , ϕ, we have reached a terminal node (non-
solution leaf). (b) IfCONST(I ) = ϕ and all then variables are determined, then we have reached
a terminal node (a solution leaf). (c) IfCONST(I ) = ϕ and there are undetermined variables, then
select the least undetermined variablex j . If there arep possible values{ek1, . . . ,ekp} for x j , then
this tree branches inp directions at this node.
(iv) Repeat this process until all the branches reach a (solution or non-solution) leaf.

By the process above, we get a tree Tree(I ). We setI1 := ♯{nodes}, I2 := ♯{leaves} andI3 := the
depth of Tree(I ) and call the tripleIno(I ) := (I1, I2, I3) the Inoue invariant of the ideal I.

For the comparison of two Inoue invariants, we use lex order temporarily. The Inoue invariant
measures the complexity of computation of the singleton set solutionsVS(I ) by the Inoue algorithm
and is a very subtle invariant ofI .

Example 21
Suppose♯(VS(I )) = 1. In case the Inoue algorithm calls ASPTransform only once and we reach
the unique solution at once, then Tree(I ) is the simplest tree with 2 nodes, 1 leaf and depth 1 (see
Figure 1 below). In this case, we sayI has a trivial Inoue invariant(2,1,1).

Fig. 1: The simplest tree with Ino(I ) = (2,1,1)

solution 

leaf

root

4 Formulation of puzzles of Sudoku type by a system of Boolean
polynomial equations

In this section, we formulate the rules of the puzzles of Sudoku type in terms of Boolean polynomial
equations after [9, 10].

A Sudoku puzzleis a partially-filled 9× 9 square board with the integers 1,2, . . . ,9, which
should be completed in such a way that every row, column and the designated 3× 3 block (see
Table 1 below) is filled with no repeated entries.

We study the simpler versions of Sudoku, namely 4-doku, diagonal 5-doku and diagonal 6-
doku puzzles.A 4-doku puzzleis a partially-filled 4× 4 square board with integers 1,2,3, 4. Every
row, column and 2× 2 block of the board should be filled with no repeated entries.

A diagonal 5-doku puzzleis a partially filled 5× 5 table, where each row, column and diagonal
(there are two diagonals) should be filed with numbers 1, . . . , 5 ( no repeated entries). Since there
are no blocks in 5-doku, it is natural to impose the diagonal conditions.

A diagonal 6-doku puzzleis a partially filled 6× 6 table, where each row, column, 2× 3 block
and diagonal should be filled with numbers 1, . . . ,6 (no repeated entries). Note that there are six
2× 3 rectangular (not square) blocks (see Table 2 below).
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Table 1:An example of Sudoku puzzles

A Sudoku puzzle (clues)
3 9

2 5
6

2
7

9 3 8
8 9 1

6 5 2
4

=⇒

The solution board
1 8 5 2 7 3 6 9 4
2 3 4 6 5 9 1 7 8
9 6 7 1 8 4 3 2 5
4 1 6 3 2 8 9 5 7
8 5 2 7 9 6 4 3 1
7 9 3 4 1 5 2 8 6
5 2 8 9 4 1 7 6 3
6 4 9 8 3 7 5 1 2
3 7 1 5 6 2 8 4 9

Table 2:An example of a diagonal 6-doku puzzle

A puzzle (clues)

1
5 2

6 3

=⇒

The solution board
1 2 3 4 5 6
4 6 5 2 1 3
3 1 2 5 6 4
6 5 4 3 2 1
5 3 1 6 4 2
2 4 6 1 3 5

Since the formulation of the rules of these puzzles by a system of Boolean polynomial equations
are similar, we take 4-doku puzzles for simplicity and formulate their rules.

Table 3:Assignment of 16 variables

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

We first assign 16 variablesa11,a12, . . . ,a44 as in Table 3. We then consider the Boolean
polynomial ring (F2)4(a11,a12 . . . , a44) with lex ordera11 < a12 < · · · < a44. We abbreviate as
0 = (0,0,0,0),1 = (1,1,1,1) and sete1 := (1,0,0,0),e2 := (0,1,0,0) etc.. Let us take the first
row. Then the 7 equations below express the rules of 4-doku for the first row:

a11 + a12 + a13 + a14 + 1 = 0 (1)

a11 · a12 = 0,a11 · a13 = 0,a11 · a14 = 0,a12 · a13 = 0,a12 · a14 = 0,a13 · a14 = 0 (2)

For example, (a11,a12,a13,a14) = (e1,e2,e3,e4) satisfies these equations. We note that there are
lots of solutions in (F2)4 other than this. For example, (a11,a12,a13,a14) = (0,e1 + e2,e3,e4) is also
a solution, which of course is not admissible as a solution for 4-doku puzzles.

There are 4 rows, 4 columns and 4 blocks so that there are 7×12= 84 equations (or generators
of an ideal) in all. Adding the clues (initial values) to the above generators, we can represent the
rules of 4-doku puzzles by Boolean polynomials. We call the ideal generated by the above 84
polynomials together with the cluesthe ideal of the given 4-doku puzzle.
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Let S be a puzzle of Sudoku type andI its ideal. In [5], we have defined the mathematical
difficulty of S as Ino(I ), which is supported by experimental data.

5 Main results

In this section, we state our main results and give the outlines of their proofs. For more details, see
Appendix [6]. We first need a definition.

Definition 22 (Redundant and irredundant puzzles)
Let S be a puzzle of Sudoku type with a unique solution. If the deletion of any one number fromS
yields a puzzle which has more than one solution, we sayS is an irredundant puzzle. A puzzle is
calledredundantif S is not irredundant.

The following proposition lessens the amount of computation very much.

Proposition 23
Let S be a redundant puzzle of Sudoku type with a unique solution, andS′ a puzzle with several
numbers deleted fromS. We assumeS′ still has a unique solution. If the Inoue invariant ofS′ is
trivial, then that ofS is trivial too.

Proof Let I (resp. I ′) be the ideal of the puzzleS (resp. S′). Suppose we are applying the
Inoue algorithm toI ′. Since the Inoue invariant ofI ′ is trivial, we reach the unique solution by
applying ASPTransform once. Since we haveI ⊃ I ′, it holds that ASP(I ) ⊃ ASP(I ′),SP(I ) ⊃
SP(I ′),Sol(ASP(I )) ⊃ Sol(ASP(I ′)).

Thus we have the following diagram:

I ′ = I ′0 ⊂ I = I0

∩ ∩
I ′1 ⊂ I1

∩ ∩
. . .

∩ ∩
J′ = I ′k ⊂ Ik

HereI ′j (resp.I j) is the ideal obtained by adding toI ′j−1 (resp.I j−1) all the solution polynomials
associated to the ASP’s contained inI ′j−1 (resp. I j−1). FurtherJ′ = ASPTransform(I ′) is the ideal
which is a solution leaf (namely,J′ contains the solution polynomials of all the variables and does
not contain non-zero constants).

We show thatIk also is the solution leaf. Indeed, sinceI ′k ⊂ Ik, Ik also contains the solution
polynomials of all the variables. Further,Ik does not contain non-zero constants. Indeed, ifIk

contains a non-zero constant, thenV(Ik) = ϕ andI (namely the puzzleS) does not have a solution, a
contradiction to the assumption. ThusIk satisfies the two conditions of the solution leaf. Therefore,
starting fromI , we reach a solution leafIk by one ASPTransform without branching, which means
that the Inoue invariant ofS is trivial.

The following is the first main result of this note.

Theorem 24 (Inoue invariants of 4-doku)
Any 4-doku puzzle with a unique solution has the trivial Inoue invariant(2,1,1).
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Proof In the case of 4-doku, the irredundant puzzles (with a unique solution) exist only if the
number of clues is 4,5,6 ([4]). Hence, by Proposition 23, it is enough to see that the Inoue invariant
of the puzzles (with a unique solution) with 4,5,6 clues is trivial.

Further, there exist only 2 essentially different (namely different modulo the action of the 4-
doku symmetry group) solution boards as shown in Table 4 ([4]):

Table 4:The essentially different 2 solution boards
No.1

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

No.2
1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 3

Now, let S be a 4-doku puzzle withk (k = 4,5,6) clues with a unique solutionT. By a
suitable 4-doku symmetry transformation, we may assumeT is No.1 or No.2 above. It is immediate
to check that all the puzzles with a unique solution obtained by deletingl (l = 10,11,12) cells
from these 2 solution boards have the trivial Inoue invariant by a computation with Magma (see
Appendix [6, Section 1]). Thus our theorem is proved.

We now turn to the diagonal 5-doku puzzles. We first enumerate the essentially different solu-
tion boards of diagonal 5-doku.

Let S5 be the symmetric group of degree 5 andD4 the dihedral group of order 8.D4 is the
symmetry group of the square with center at the origin. We note thatS5 acts on the setX of the
solution boards of the diagonal 5-doku as the permutation of numbers.D4 also acts naturally on
X and actually,S5 × D4 is the symmetry group of the diagonal 5-doku. The following theorem
classifies the setX of solution boards modulo the action ofS5 × D4.

Theorem 25 (Essentially different solution boards of diagonal 5-doku)
There are only three different solution boards moduloS5 × D4-action as shown below.

NSB No.1
1 2 3 4 5
2 4 5 3 1
5 3 2 1 4
3 1 4 5 2
4 5 1 2 3

NSB No.3
1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

NSB No.6
1 2 3 4 5
4 5 2 3 1
5 3 4 1 2
3 1 5 2 4
2 4 1 5 3

For the proof of Theorem 25, we first consider onlyS5-action, forgettingD4-action.

Definition 26 (Normalized solution boards of diagonal 5-doku)
A normalized solution board (NSB for short) is the one such that the first row is given bya11 =

1,a12 = 2,a13 = 3,a14 = 4,a15 = 5.

We note that each equivalence class of solution boards under theS5-action contains a unique
normalized solution board.

Proposition 27 (8 NSB’s of diagonal 5-doku)
There are exactly 8 normalized solution boards as shown below.
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NSB No.1
1 2 3 4 5
2 4 5 3 1
5 3 2 1 4
3 1 4 5 2
4 5 1 2 3

NSB No.2
1 2 3 4 5
2 5 4 1 3
4 3 2 5 1
5 4 1 3 2
3 1 5 2 4

NSB No.3
1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

NSB No.4
1 2 3 4 5
3 5 2 1 4
5 1 4 3 2
4 3 5 2 1
2 4 1 5 3

NSB No.5
1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2

NSB No.6
1 2 3 4 5
4 5 2 3 1
5 3 4 1 2
3 1 5 2 4
2 4 1 5 3

NSB No.7
1 2 3 4 5
5 3 1 2 4
2 5 4 3 1
4 1 2 5 3
3 4 5 1 2

NSB No.8
1 2 3 4 5
5 3 4 1 2
4 5 2 3 1
2 4 1 5 3
3 1 5 2 4

Proof Let I be the ideal of the puzzle with the initial conditiona11 = 1,a12 = 2,a13 = 3, a14 =

4,a15 = 5. Then we get the desired 8 solution boards by applying the Inoue solver (algorithm) toI
(see Appendix [6, Subsection 2.1]).

Proof of Theorem 25. If we transform the 8 NSB’s with theD4-action and then normalize, it is
easy to check that there are 3 orbits:{No.1, 2,4,7}, {No.3, 5}, {No.6,8}. Thus NSB No.1,3,6 are the
complete representatives of the solution boards underS5 × D4 action.

We next enumerate the diagonal 5-doku puzzles with a unique solution.

Theorem 28 (Number of the diagonal 5-doku puzzles with a unique solution)
(i) There exist exactly 30964554720 diagonal 5-doku puzzles with a unique solution.
(ii) The irredundant puzzles exist only if the number of clues is 4,5,6, and the number of them is
7639680 in all.

Proof (i) Let S be a diagonal 5-doku puzzle with a unique solutionT. By a suitable transfor-
mation, we may assumeT is one of the three NSB’s in Theorem 25. Now, by a time-consuming
computation by Magma (see Appendix [6, Subsection 2.2]), we find that the number of puzzles
which has the NSB No.1 (resp. No.3, No.6) as the unique solution is 32258030 (resp. 32246636,
32256282). Thus there are

(32258030× 4+ 32246636× 2+ 32256282× 2)× 5! = 30964554720

puzzles with a unique solution in all. Note that we do not take theS5 × D4-action into account for
this enumeration.
(ii) By a similar computation as in (i), we can check that there are no irredundant puzzles which
have NSB No.1, No.3, No.6 as a unique solution withk clues (k ≥ 7). Also there are exactly 7996
(resp. 7920, 7920) irredundant puzzles which has No.1 (resp. No.3, No.6) as a unique solution (see
Appendix [6, Subsection 2.2]). Thus there are

(7996× 4+ 7920× 2+ 7920× 2)× 5! = 7639680

irredundant puzzles in all.

We have a following impressive corollary.

Corollary 29 (The number of minimal and maximal clues of diagonal 5-doku)
(i) The minimal number of clues of the diagonal 5-doku puzzles with a unique solution is 4.
(ii) The maximal number of the clues of the irredundant ones is 6.
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Remark 30
(i) Theorem 28 is significant in itself since this kind of precise enumeration seems to be known
only for 4-doku so far ([4]).
(ii) To accomplish the computation for Theorem 28, we spent about a month using several Windows
PC’s simultaneously.

The following theorem is our second main result.

Theorem 31 (Inoue invariants of diagonal 5-doku)
All the diagonal 5-doku puzzles with a unique solution have the trivial Inoue invariant except the
following two puzzlesW1,W2 (moduloS5×D4-action). These two have the Inoue invariant(4,2,2).

Table 5:The diagonal 5-doku puzzles with the non-trivial Inoue invariant (4,2,2)
W1

1 4 5

3 1 5

W2
1

4

3 1
4 5

Proof By Theorem 28 (ii), the irredundant diagonal 5-doku puzzles exist only if the number of
clues is 4,5,6.

Now, letS be a puzzle withk (k = 4,5,6) clues with a unique solutionT. By a suitable 5-doku
symmetry transformation, we may assumeT is one of the 3 NSB’s in Theorem 25. We can check
that all the puzzles with a unique solution obtained by deletingl (l = 19,20,21) cells from these 3
solution boards have the trivial Inoue invariant exceptW1 andW2 by a computation with Magma
(see Appendix [6, Subsection 2.3]).

Furthermore, if we add any number contained in the solution board toW1 andW2, it is easy to
check that the resulting puzzles all have the trivial Inoue invariant. Thus by Proposition 23, we are
done.

Remark 32
We note thatWi (i = 1,2) has 6 clues, whereas the minimal number of clues of the puzzles with
a unique solution is 4. Since it is natural to expect that the fewer the clues, the more difficult the
puzzles are, this is an interesting phenomenon.

We finally report a partial result on the Inoue invariants of the diagonal 6-doku puzzles, whose
proof we omit since it is similar to that of Theorem 31.

Theorem 33 (Inoue invariants of diagonal 6-doku restricted to the 5-clues case)
(i) The minimal number of clues of the diagonal 6-doku puzzles with a unique solution is 5.
(ii) There exist exactly 44542080 puzzles with 5 clues which have a unique solution. Among them,
there exist 10540800 puzzles with a non-trivial Inoue invariant. The biggest Inoue invariant of
them is(20,12,5), and the puzzle with this Inoue invariant(20,12,5) is the following one in Table
6.
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Table 6:The diagonal 6-doku puzzle with 5 clues with the biggest Inoue invariant (20,12,5)

　 　 　 　 5 　
　

4
3

1 6

Remark 34
(i) As Theorem 33 shows, there are many diagonal 6-doku puzzles with a non-trivial Inoue invariant
unlike 4-doku and diagonal 5-doku puzzles, even restricted to the case of minimal 5 clues.

We also note that, as seen from the case of diagonal 5-doku puzzles, the number of clues of the
puzzle with the biggest Inoue invariant may be larger than the minimal number of clues (Remark
32). Hence it may well happen that the diagonal 6-doku puzzle with the biggest Inoue invariant
(unknown so far) hasp clues wherep > 5.
(ii) The reason that Theorem 33 refers only to the case of 5 clues is that it takes too much time
for this computation. We estimate that it will take several years (maybe more) to achieve the same
computation for all the number of clues. Thus, in the case of diagonal 6-doku, we have not obtained
a complete result as in the case of diagonal 5-doku.
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