
COMMUNICATIONS OF

JAPAN SOCIETY FOR SYMBOLIC AND

ALGEBRAIC COMPUTATION

2016

VOL.2

JSSAC
ISBN978-4-903027-28-9

Aims and Scope:

Communications of JSSAC (Japan Society of Symbolic and Algebraic Computations) is dedicated

to researchers who have a special interest in symbolic and algebraic computation. Communica-

tions of JSSAC publishes original articles dealing with every aspect of symbolic and algebraic

computation.

Research Areas Include but are not limited to:

・Theoretical and algorithmic issues of symbolic and algebraic computation

・Design and implementation of symbolic and algebraic computation systems

・Applications of symbolic and algebraic computation in education, science, engineering and in-

dustry, pure mathematics, etc.

Legal Requirements:

In order to submit a manuscript, at least one of the author(s) should be a member of JSSAC in

principle

Manuscript Submission:

A manuscript must be written in English.

It also should be written in Latex.

A submission must include:

(1) a latex source file

(2) a dvi, ps or pdf file of (1)

(3) a title of the paper as well as the name(s) and affiliation(s) and mailing address(es) of the

author(s)

(4) an abstract (no more than 150 words) and key words (5 or less)

For full and complete guide for authors, please refer to the following sites.

http://www.jssac.org/Editor/Style/index.html (in Japanese)

http://www.jssac.org/Editor/Style/index-e.html (in English)

Every submitted manuscript will undergo a standard review process and the acceptance for pub-

lication by the editorial board will be based on its originality, significance of contribution and its

relevance to the scope of Communications of JSSAC.

Miscellaneous:

・The copyright of a published paper is transferred to JSSAC.

・Communications of JSSAC has no page charges.

Contents

On the Inoue invariants of the puzzles of Sudoku type

Tetsuo Nakano , Kenji Arai, Hiromasa Watanabe 1

Approximate Polynomial GCD over Integers with Digits-wise Lattice

Kosaku Nagasaka . 15

Practice of Drawing Graphs of Implicit Functions of Three Variables
Noriko Hyodo , Yuji Kondoh , Hirokazu Murao , Tomokatsu Saito ,

Tadashi Takahashi .
33

c⃝ 2016 Japan Society for Symbolic and Algebraic Computation

Communications of JSSAC (2016)
Vol. 2, pp. 1 – 14

On the Inoue invariants of the puzzles of Sudoku type

Tetsuo Nakano∗

Graduate School of Science and Engineering, Tokyo Denki University

Kenji Arai
Graduate School of Science and Engineering, Tokyo Denki University

Hiromasa Watanabe
Graduate School of Science and Engineering, Tokyo Denki University

(Received 29/Mar/2013 Accepted 13/Sept/2014)

Abstract

A Sudoku puzzle is a worldwide popular game, and is also an interesting object in combina-
torics and computer algebra. Recently, Inoue applied his excellent algorithm on finding the
singleton set solutions of a system of Boolean polynomial equations to the solution of the puz-
zles of Sudoku type. Further, by means of his algorithm, we have defined the Inoue invariant
of puzzles of Sudoku type, which measures the mathematical difficulty of them.

The purpose of this note is study the Inoue invariants of the easier puzzles of Sudoku type,
namely, 4-doku, diagonal 5-doku and diagonal 6-doku puzzles. Our main results show that
all the 4-doku and diagonal 5-doku puzzles (with a unique solution) have the trivial Inoue
invariant (2,1,1) except 2 puzzles, whereas there exist many diagonal 6-doku puzzles with a
non-trivial, big Inoue invariant.

1 Introduction

A Sudoku puzzleis a very popular game played by everybody in the world. Recently, numerous
researches have been done on the mathematical (combinatorial) structure of Sudoku (see, for in-
stance, the book [7] and references in it). Among them, Sato, Inoue and others [9, 10] studied it by
means of Boolean Groebner bases.

Quite recently, Inoue [3] obtained an excellent method for finding the singleton set solutions
of a system of Boolean polynomial equations. He also applied his algorithm to Sudoku and ob-
served that relatively easy Sudoku puzzles can be solved without branches (namely without "else"
procedure in Algorithm 34 of [3]).

∗tnakano@mail.dendai.ac.jp

This work was supported by JSPS KAKENHI (23540057).

c⃝ 2016 Japan Society for Symbolic and Algebraic Computation

2 Communications of JSSAC Vol. 2

Stimulated by his observation, we went one step further and definedthe Inoue invariantof
puzzles of Sudoku type as follows ([5]). The performance of Inoue’s algorithm for a Boolean
polynomial ideal is well described by a tree diagram and we have defined the Inoue invariant of
such an ideal as the triple of the basic numbers of this tree. We discovered that, in the case of
those ideals arising from the puzzles of Sudoku type, this invariant is an excellent indicator of
the difficulty of the puzzles by experiments. Thus we have defined the mathematical difficulty
of the puzzles of Sudoku type as the Inoue invariant of their ideals. For example, in the case of
Sudoku, the easier puzzles up to the middle level have the trivial Inoue invariant (2,1,1), whereas
the difficult ones have a non-trivial Inoue invariant. As far as we know, the biggest Inoue invariant
so far is (964, 558,13), which is achieved by a 20-clues puzzle.

In this note, we study the Inoue invariants of the simpler puzzles of Sudoku type, namely 4-
doku and the diagonal 5-doku. We computed many examples of them and got a conjecture that all
the 4-doku and diagonal 5-doku puzzles with a unique solution have the the trivial Inoue invariant
(2,1,1). The purpose of this note is to give an answer to this conjecture. Our main results are
summarized as follows.

Theorem 1 (Inoue invariants of 4-doku)
All the 4-doku puzzles with a unique solution have the trivial Inoue invariant(2,1,1).

Theorem 2 (Inoue invariants of diagonal 5-doku)
(i) There exist exactly 30964554720 diagonal 5-doku puzzles with a unique solution.
(ii) They all have the trivial Inoue invariant(2,1,1) except the 2 puzzlesWi (i = 1,2), both of
which have the Inoue invariant(4,2,2) (see Table 5 in Section 5 forWi , i = 1,2).

Thus our conjecture is false in the case of the diagonal 5-doku puzzles，but we discovered 2
special puzzlesWi (i = 1,2) with a non-trivial Inoue invariant. We also report a partial result on the
Inoue invariants of the diagonal 6-doku puzzles, which shows that the there exist many diagonal
6-doku puzzles with a non-trivial, big Inoue invariant.

The contents of this note are as follows. In Section 2, we review Boolean Groebner bases,
especially the stratified Boolean Groebner bases. In section 3, we summarize Inoue’s algorithm
and the Inoue invariants after [3, 5]. In section 4, we formulate the rules of puzzles of Sudoku type
by a system of Boolean polynomial equations following [9, 10], and we report our main results
in Section 5. In Appendix [6], which is separated from the main body of this note and put in our
website, we summarize the detailed data and the programs used in the proof of our main results.

For the implementation of Inoue’s algorithm, we have used the computer algebra system Magma
[1].
Acknowledgment: we thank the referee for pointing out and correcting a critical mistake in the first
version of this note.

2 Boolean Groebner Bases

In this section, we will briefly review the Groebner bases of ideals in the polynomial ring over a
Boolean ring and the Boolean Groebner bases of ideals in a Boolean polynomial ring. For more
details on Boolean Groebner bases, see [8, 9, 10, 11].

Let B be a Boolean ring. Namely,B is a commutative ring with an identity such that any
elementa ∈ B satisfiesa2 = a. For example, for a natural numberm, (F2)m is a finite Boolean
ring, whereF2 := Z/2Z is the field with 2 elements, and the addition and multiplication in (F2)m

are defined componentwise. Conversely, any finite Boolean ring is isomorphic to (F2)m for somem
by the Stone representation theorem.

Communications of JSSAC Vol. 2 3

Let B[x] = B[x1, . . . , xn] be the polynomial ring overB with n indeterminates with a given
monomial order. For the notation on polynomials, we follow [2] as below.

Notation 3
(i) LM(f) (resp. LT(f), LC(f), mdeg(f))) is the leading monomial (resp. the leading term, the
leading coefficient, the multidegree) of a polynomialf so thatLT(f) = LC(f)·LM(f) andLM(f) =
xmdeg(f) hold.
(ii) For monomialsxα andxβ, xα | xβ means thatxα dividesxβ.

We first show the division algorithm inB[x].

Theorem 4 (Division algorithm)
Given a polynomialf and an ordered set ofs polynomialsF := (f1, . . . , fs) in B[x], we get an ex-
pression of the formf = a1 f1+ · · ·+as fs+ r, where(a1, . . . ,as) is the quotient andr the remainder,
by the following algorithm:
Algorithm variables:p (intermediate dividend),B = (b1, . . . ,bs) (intermediate quotient),r (inter-
mediate remainder).
Initial values:p := f , B := (0, . . . ,0), r := 0.
(i) If there existsi such thatLM(fi) | LM(p) andLC(p) · LC(fi) , 0, then take the least suchi and
redefinep := p− LC(p) · LM(p)

LM(fi)
· fi andbi := bi + LC(p) · LM(p)

LM(fi)
(division step).

(ii) If there exists noi such thatLM(fi) | LM(p) andLC(p)·LC(fi) , 0, then redefinep := p−LT(p)
andr := r + LT(p) (remainder step).
This algorithm terminates (namelyp = 0) in a finite number of steps and yields an expression of
division

f = a1 f1 + · · · + as fs + r,

wherer satisfies the condition of the remainder:r = 0 or in caser , 0, any termt of r satisfies
eitherLM(fi) - LM(t) or LC(t) · LC(fi) = 0 in caseLM(fi) | LM(t) for any i. Furthermore, if
ai fi , 0 thenmdeg(ai fi) ≤ mdeg(f) holds.

This division algorithm inB[x] is quite similar to that in the polynomial ring over a field,
except that one additional condition (the product of coefficients is not equal to 0) is necessary for
the division step to occur.

For an idealI ⊂ B[x], we denote by LT(I) the set of the leading terms of the elements (except
0) in I . We now define a Groebner basis of an ideal inB[x].

Definition 5 (Groebner bases)
Let I ⊂ B[x] be an ideal andG := {g1, . . . ,gs} ⊂ I a finite subset ofI . We sayG is a Groebner
basisof I if ⟨LT(I)⟩ = ⟨LT(g1), . . . ,LT(gs)⟩.

Based on the division algorithm, most of the results in [2, Chapter 2] hold with suitable modifi-
cations. Especially, the Buchberger criterion and algorithm hold (with slight modifications) so that
we can obtain a Groebner basis of a finitely generated ideal by the Buchberger algorithm.

We next define reduced and stratified Groebner bases respectively. We denote byf
F

the re-
mainder of the division off by F.

Definition 6 (Reduced Groebner bases)
Let G be a Groebner basis of an idealI . G is calledreducedif gG\{g}

= g holds for anyg ∈ G.

Reduced Groebner bases are not unique as shown in the following example.

4 Communications of JSSAC Vol. 2

Example 7
In the polynomial ring(F2)2[x] of one variable,{(1,0)x, (0,1)x} and {(1,1)x} are both reduced
Groebner bases of the same idealI = ⟨x⟩.

Definition 8 (Stratified Groebner bases)
Let G ⊂ I be a reduced Groebner basis.G is calleda stratified Groebner basisif LM(f) , LM(g)
for any f ,g ∈ G, f , g.

Proposition 9 (Stratification algorithm)
Let G ⊂ I be a reduced Groebner basis. DivideG into several groupsG1, . . . ,Gt according to
leading monomials, where each member of a group has the same leading monomial and different
groups have different leading monomials:G = G1 ∪ · · · ∪Gt (disjoint union). For each groupGi ,
sethi :=

∑
g∈Gi

g. ThenG′ := {h1, . . . ,ht} is a stratified Groebner basis ofI .

The following is the main theorem of the Groebner bases.

Theorem 10 (Existence and uniqueness of the stratified Groebner bases)
Fix a monomial order onB[x]. For a given finitely generated idealI ⊂ B[x], a stratified Groebner
basis exists and it is determined byI uniquely.

For the actual computation of the stratified Groebner bases in the case ofB = (F2)m, we use the
"componentwise" method explained below. We first prepare some notations.

Consider the natural isomorphism (F2)m[x] � (F2[x])m and letπi : (F2[x])m → F2[x] be the
projection to thei-th component. For anyf ∈ (F2)m[x], we set fi := πi(f) ∈ F2[x] and call it the
i-th component off . Then the isomorphism (F2)m[x] � (F2[x])m is given as (F2)m[x] ∋ f ←→
(f1, . . . , fm) ∈ (F2[x])m. For an idealI ⊂ (F2)m[x], we setI i := { fi | f ∈ I } ⊂ F2[x] and call this the
i-th component ideal ofI .

The algorithm is based on the following theorem:

Theorem 11
Fix a monomial order on(F2)m[x] and let I ⊂ (F2)m[x] be an ideal. For anyi (1 ≤ i ≤ m),
let I i ⊂ F2[x] be thei-th component ideal ofI andGi the reduced Groebner basis ofI i . Then
G := (G1,0 . . . , 0)∪ (0,G2,0, . . . ,0)∪ · · · ∪ (0, . . . ,0,Gm) is a reduced Groebner basis ofI , where
(G1,0, . . . ,0) = {(g,0, . . . , 0) | g ∈ G1} etc..

Thus we can compute the stratified Groebner basis ofI by Theorem 11 followed by the strati-
fication process (Proposition 9).

We now turn to the Boolean Groebner bases. SinceB[x] itself is not a Boolean ring, we set

B(x) = B(x1, . . . , xn) := B[x1, . . . , xn]/⟨x2
1 − x1, . . . , x

2
n − xn⟩.

B(x) is a Boolean ring and we call itthe Boolean polynomial ringoverB with n indeterminates. A
monomialxα1

1 . . . x
αn
n is calleda Boolean monomialif αi ∈ {0,1} for any i. We note anyf ∈ B(x)

can be written uniquely as
∑

k ckxβk whereck ∈ B andxβk is a distinct Boolean monomial, which
we call the canonical representation of f. Given a monomial order onB[x] and f ∈ B(x), we can
define LT(f),LM(f) and LC(f) using the canonical representation off .

Definition 12 (Boolean Groebner bases)
Let I ⊂ B(x) be an ideal andG := {g1, . . . , gs} ⊂ I a finite subset ofI . We sayG is a Boolean
Groebner basis(a BG basis for short) ofI if ⟨LT(I)⟩ = ⟨LT(g1), . . . ,LT(gs)⟩.

Communications of JSSAC Vol. 2 5

The division algorithm (Theorem 4) works also inB(x) and we can define reduced and stratified
BG bases as in Definition 6 and 8. Then the existence and uniqueness of the stratified BG bases
hold too. We abbreviate the stratified BG bases asthe SBG basesin the following sections.

We can compute a BG basis of the idealI = ⟨F⟩ ⊂ B(x) as follows. Compute a Groebner basis
G of ⟨F ∪ {x2

1 − x1, . . . , x2
n − xn}⟩ in B[x]. ThenG′ := G \ {x2

1 − x1, . . . , x2
n − xn} is a BG basis ofI .

Furthermore, ifG is stratified, thenG′ is also stratified. We note that the componentwise method
(Theorem 11) also works for the BG bases.

We finally refer to the Boolean Hilbert Nullstellensatz. For an idealI ⊂ B(x), letV(I) := {a ∈
Bn | f (a) = 0 for any f ∈ I } be the affine variety defined byI .

Theorem 13 (Boolean Hilbert Nullstellensatz)
Let I ⊂ B(x) be a finitely generated ideal. Then the following assertions hold.
(i) V(I) = ϕ if and only if I contains a non-zero constant.
(ii) AssumeV(I) , ϕ. Then f (x) ∈ I if and only if f (a) = 0 for anya ∈ V(I).

3 The Inoue algorithm and the Inoue invariants

In this section, we will briefly review the Inoue algorithm and the Inoue invariants ([3, 5]). The
Inoue algorithm is an excellent and almost canonical method for computing the singleton set solu-
tions of a system of Boolean polynomial equations.

We work in the Boolean polynomial ring (F2)m(x) = (F2)m(x1, . . . , xn). For an idealI ⊂
(F2)m(x), we set

VS(I) := {(a1, . . . ,an) | ai ∈ {e1, . . . , em}, f (a1, . . . ,an) = 0 for any f ∈ I },

whereei := (δi j) j=1,...,m. VS(I) is the set of singleton set solutions and we would like to compute
this set.

The Inoue algorithm is based on the conceptalmost solution polynomialscontained in the ideal.
In the following, we setE :=

∑m
i=1 ei = 1(F2)m.

Definition 14 (Solution polynomial)
We call f ∈ (F2)m(x) of the form f := E · x j + ek = x j + ek for somej, k a solution polynomial.

We note that for a solution polynomialf := x j + ek, f = 0 is equivalent tox j = ek. We next
define an almost solution polynomial.

Definition 15 (Almost solution polynomial)
(i) A polynomial f (x) ∈ (F2)m(x) is calledan almost solution polynomial of type 1(ASP of type 1
for short) if there existj, k such thatek · f (x) = ek · x j + ek (namely, fk(x) = x j + 1 where fk is the
k-th component off). We callSol(f) := x j + ek the solution polynomial associated to the ASP f.
We require a solution polynomial to be excluded from the ASP’s of type 1.
(ii) A polynomial g(x) ∈ (F2)m(x) is calledan ASP of type 2if there existj, k such thatet ·g = et · x j

for any t exceptk (namely,gt(x) = x j for any t exceptk). We callSol(g) := x j + ek the solution
polynomial associated to g. We require a solution polynomial to be excluded from the ASP’s of
type 2.

Supposef is an ASP of type 1 with its solution polynomial Sol(f) = x j + ek. Then f = 0
implies that thek-th component of the variablex j is 1. Thusx j must be equal toek since we are
computingVS(I). But note thatf = 0 is not equivalent tox j = ek. A similar reasoning holds for
ASP of type 2.

We prepare some notations for the Inoue algorithm.

6 Communications of JSSAC Vol. 2

Notation 16
Let I ⊂ (F2)m(x) be an ideal.
(i) CONST(I) := the set of non-zero constants contained inI .
(ii) SP(I) := the set of solution polynomials contained inI . For a variablex j , if a solution polyno-
mial f = x j +ek is contained inSP(I), then we say the variablex j is determined (with the valueek).
(iii) ASP(I):= the set of ASP’s (of type 1 or 2) inI .
(iv) Sol(ASP(I)) := {Sol(f) | f ∈ AS(I)} = the set of solution polynomials associated to ASP’s
contained inI .

The following algorithm ASPTransform is the main part of the Inoue algorithm.

Algorithm 17 (ASPTransform)
Let I be an ideal (Input).
(i) If CONST(I) , ϕ, then the output ASPTransform(I) is I .
(ii) If CONST(I) = ϕ, then redefineI := I + ⟨Sol(ASP(I))⟩. Namely, add toI all the solution
polynomials associated to the ASP’s inI . Then go to (i) again.
(iii) Repeat this process untilCONST(I) , ϕ or ASP(I) = ϕ, and the output ASPTransform(I) is I .

Now we can state the Inoue algorithm.

Algorithm 18 (The Inoue algorithm)
Fix a linear order on the set of variables{x1, . . . , xn} (not a monomial order). LetI ⊂ (F2)m(x) be
an ideal (input). SetL := {} (empty set). We will put a singleton set solution inL in order.
(i) If CONST(I) , ϕ, then setL := L ∪ {}.
(ii) If CONST(I) = ϕ, then redefineI := ASPTransform(I).
(iii) If CONST(I) , ϕ, thenL := L ∪ {}. If CONST(I) = ϕ , we have 2 cases. (a) IfSP(I) consists
of n solution polynomials (namelyI = ⟨x j + ejk | j = 1, . . . ,n⟩) so that all the variables are
determined, thenL := L∪ {SP(I)} (this is a solution). (b) Else letx j be the least variable among the
undetermined ones and{ek1, . . . ,ekp} the possible values ofx j . Hereekl is a possible value ofx j if
and only ifCONST(I + ⟨x j + ekl ⟩) = ϕ. For eachl (1 ≤ l ≤ p), redefineI := I + ⟨x j + ekl ⟩ and go to
(ii).
(iv) The final outputInoue(I) = L.

The following theorem makes it possible to rephrase the Inoue algorithm in terms of SBG bases
instead of ideals.

Theorem 19
Let I be an ideal in(F2)m(x) andG its SBG basis for a given monomial order. In the assertions (ii),
(iii) below, we assumeI does not contain non-zero constants.
(i) For a non-zero constantc ∈ (F2)m, c ∈ I if and only if c ∈ G.
(ii) For a solution polynomialf , f ∈ I if and only if f ∈ G.
(iii) If an ASP g is in I , then there exists an ASPg′ ∈ G such thatSol(g) = Sol(g′).

The assertion (iii) of Theorem 19 above is the main result (Theorem 31) of [3]. By Theorem
19, we can rephrase the Inoue Algorithm in terms of SBG bases instead of ideals. Namely, just
replace the idealI by its SBG basisG in Algorithms 17 and 18.

For the actual implementation of this algorithm, we also need the explicit classification of
ASP’s contained in an SBG basis (see [5, Corollary 3.9]). Inoue has implemented his algorithm on
the computer algebra system Risa/Asir, whereas we have implemented it on the computer algebra
system Magma [1].

We next define the Inoue invariant of an idealI ⊂ (F2)m(x). The performance of the Inoue
algorithm is well described by a tree diagram defined as below.

Communications of JSSAC Vol. 2 7

Definition 20 (Inoue Invariant)
Let I be an ideal and perform the Inoue algorithm starting fromI . We will construct a tree Tree(I)
of I as follows:
(i) I is the first node (root).
(ii) When the algorithm ASPTransform stops, we have a second node.
(iii) There are three cases. (a) If at this nodeCONST(I) , ϕ, we have reached a terminal node (non-
solution leaf). (b) IfCONST(I) = ϕ and all then variables are determined, then we have reached
a terminal node (a solution leaf). (c) IfCONST(I) = ϕ and there are undetermined variables, then
select the least undetermined variablex j . If there arep possible values{ek1, . . . ,ekp} for x j , then
this tree branches inp directions at this node.
(iv) Repeat this process until all the branches reach a (solution or non-solution) leaf.

By the process above, we get a tree Tree(I). We setI1 := ♯{nodes}, I2 := ♯{leaves} andI3 := the
depth of Tree(I) and call the tripleIno(I) := (I1, I2, I3) the Inoue invariant of the ideal I.

For the comparison of two Inoue invariants, we use lex order temporarily. The Inoue invariant
measures the complexity of computation of the singleton set solutionsVS(I) by the Inoue algorithm
and is a very subtle invariant ofI .

Example 21
Suppose♯(VS(I)) = 1. In case the Inoue algorithm calls ASPTransform only once and we reach
the unique solution at once, then Tree(I) is the simplest tree with 2 nodes, 1 leaf and depth 1 (see
Figure 1 below). In this case, we sayI has a trivial Inoue invariant(2,1,1).

Fig. 1: The simplest tree with Ino(I) = (2,1,1)

solution

leaf

root

4 Formulation of puzzles of Sudoku type by a system of Boolean
polynomial equations

In this section, we formulate the rules of the puzzles of Sudoku type in terms of Boolean polynomial
equations after [9, 10].

A Sudoku puzzleis a partially-filled 9× 9 square board with the integers 1,2, . . . ,9, which
should be completed in such a way that every row, column and the designated 3× 3 block (see
Table 1 below) is filled with no repeated entries.

We study the simpler versions of Sudoku, namely 4-doku, diagonal 5-doku and diagonal 6-
doku puzzles.A 4-doku puzzleis a partially-filled 4× 4 square board with integers 1,2,3, 4. Every
row, column and 2× 2 block of the board should be filled with no repeated entries.

A diagonal 5-doku puzzleis a partially filled 5× 5 table, where each row, column and diagonal
(there are two diagonals) should be filed with numbers 1, . . . , 5 (no repeated entries). Since there
are no blocks in 5-doku, it is natural to impose the diagonal conditions.

A diagonal 6-doku puzzleis a partially filled 6× 6 table, where each row, column, 2× 3 block
and diagonal should be filled with numbers 1, . . . ,6 (no repeated entries). Note that there are six
2× 3 rectangular (not square) blocks (see Table 2 below).

8 Communications of JSSAC Vol. 2

Table 1:An example of Sudoku puzzles

A Sudoku puzzle (clues)
3 9

2 5
6

2
7

9 3 8
8 9 1

6 5 2
4

=⇒

The solution board
1 8 5 2 7 3 6 9 4
2 3 4 6 5 9 1 7 8
9 6 7 1 8 4 3 2 5
4 1 6 3 2 8 9 5 7
8 5 2 7 9 6 4 3 1
7 9 3 4 1 5 2 8 6
5 2 8 9 4 1 7 6 3
6 4 9 8 3 7 5 1 2
3 7 1 5 6 2 8 4 9

Table 2:An example of a diagonal 6-doku puzzle

A puzzle (clues)

1
5 2

6 3

=⇒

The solution board
1 2 3 4 5 6
4 6 5 2 1 3
3 1 2 5 6 4
6 5 4 3 2 1
5 3 1 6 4 2
2 4 6 1 3 5

Since the formulation of the rules of these puzzles by a system of Boolean polynomial equations
are similar, we take 4-doku puzzles for simplicity and formulate their rules.

Table 3:Assignment of 16 variables

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

We first assign 16 variablesa11,a12, . . . ,a44 as in Table 3. We then consider the Boolean
polynomial ring (F2)4(a11,a12 . . . , a44) with lex ordera11 < a12 < · · · < a44. We abbreviate as
0 = (0,0,0,0),1 = (1,1,1,1) and sete1 := (1,0,0,0),e2 := (0,1,0,0) etc.. Let us take the first
row. Then the 7 equations below express the rules of 4-doku for the first row:

a11 + a12 + a13 + a14 + 1 = 0 (1)

a11 · a12 = 0,a11 · a13 = 0,a11 · a14 = 0,a12 · a13 = 0,a12 · a14 = 0,a13 · a14 = 0 (2)

For example, (a11,a12,a13,a14) = (e1,e2,e3,e4) satisfies these equations. We note that there are
lots of solutions in (F2)4 other than this. For example, (a11,a12,a13,a14) = (0,e1 + e2,e3,e4) is also
a solution, which of course is not admissible as a solution for 4-doku puzzles.

There are 4 rows, 4 columns and 4 blocks so that there are 7×12= 84 equations (or generators
of an ideal) in all. Adding the clues (initial values) to the above generators, we can represent the
rules of 4-doku puzzles by Boolean polynomials. We call the ideal generated by the above 84
polynomials together with the cluesthe ideal of the given 4-doku puzzle.

Communications of JSSAC Vol. 2 9

Let S be a puzzle of Sudoku type andI its ideal. In [5], we have defined the mathematical
difficulty of S as Ino(I), which is supported by experimental data.

5 Main results

In this section, we state our main results and give the outlines of their proofs. For more details, see
Appendix [6]. We first need a definition.

Definition 22 (Redundant and irredundant puzzles)
Let S be a puzzle of Sudoku type with a unique solution. If the deletion of any one number fromS
yields a puzzle which has more than one solution, we sayS is an irredundant puzzle. A puzzle is
calledredundantif S is not irredundant.

The following proposition lessens the amount of computation very much.

Proposition 23
Let S be a redundant puzzle of Sudoku type with a unique solution, andS′ a puzzle with several
numbers deleted fromS. We assumeS′ still has a unique solution. If the Inoue invariant ofS′ is
trivial, then that ofS is trivial too.

Proof Let I (resp. I ′) be the ideal of the puzzleS (resp. S′). Suppose we are applying the
Inoue algorithm toI ′. Since the Inoue invariant ofI ′ is trivial, we reach the unique solution by
applying ASPTransform once. Since we haveI ⊃ I ′, it holds that ASP(I) ⊃ ASP(I ′),SP(I) ⊃
SP(I ′),Sol(ASP(I)) ⊃ Sol(ASP(I ′)).

Thus we have the following diagram:

I ′ = I ′0 ⊂ I = I0

∩ ∩
I ′1 ⊂ I1

∩ ∩
. . .

∩ ∩
J′ = I ′k ⊂ Ik

HereI ′j (resp.I j) is the ideal obtained by adding toI ′j−1 (resp.I j−1) all the solution polynomials
associated to the ASP’s contained inI ′j−1 (resp. I j−1). FurtherJ′ = ASPTransform(I ′) is the ideal
which is a solution leaf (namely,J′ contains the solution polynomials of all the variables and does
not contain non-zero constants).

We show thatIk also is the solution leaf. Indeed, sinceI ′k ⊂ Ik, Ik also contains the solution
polynomials of all the variables. Further,Ik does not contain non-zero constants. Indeed, ifIk

contains a non-zero constant, thenV(Ik) = ϕ andI (namely the puzzleS) does not have a solution, a
contradiction to the assumption. ThusIk satisfies the two conditions of the solution leaf. Therefore,
starting fromI , we reach a solution leafIk by one ASPTransform without branching, which means
that the Inoue invariant ofS is trivial.

The following is the first main result of this note.

Theorem 24 (Inoue invariants of 4-doku)
Any 4-doku puzzle with a unique solution has the trivial Inoue invariant(2,1,1).

10 Communications of JSSAC Vol. 2

Proof In the case of 4-doku, the irredundant puzzles (with a unique solution) exist only if the
number of clues is 4,5,6 ([4]). Hence, by Proposition 23, it is enough to see that the Inoue invariant
of the puzzles (with a unique solution) with 4,5,6 clues is trivial.

Further, there exist only 2 essentially different (namely different modulo the action of the 4-
doku symmetry group) solution boards as shown in Table 4 ([4]):

Table 4:The essentially different 2 solution boards
No.1

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

No.2
1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 3

Now, let S be a 4-doku puzzle withk (k = 4,5,6) clues with a unique solutionT. By a
suitable 4-doku symmetry transformation, we may assumeT is No.1 or No.2 above. It is immediate
to check that all the puzzles with a unique solution obtained by deletingl (l = 10,11,12) cells
from these 2 solution boards have the trivial Inoue invariant by a computation with Magma (see
Appendix [6, Section 1]). Thus our theorem is proved.

We now turn to the diagonal 5-doku puzzles. We first enumerate the essentially different solu-
tion boards of diagonal 5-doku.

Let S5 be the symmetric group of degree 5 andD4 the dihedral group of order 8.D4 is the
symmetry group of the square with center at the origin. We note thatS5 acts on the setX of the
solution boards of the diagonal 5-doku as the permutation of numbers.D4 also acts naturally on
X and actually,S5 × D4 is the symmetry group of the diagonal 5-doku. The following theorem
classifies the setX of solution boards modulo the action ofS5 × D4.

Theorem 25 (Essentially different solution boards of diagonal 5-doku)
There are only three different solution boards moduloS5 × D4-action as shown below.

NSB No.1
1 2 3 4 5
2 4 5 3 1
5 3 2 1 4
3 1 4 5 2
4 5 1 2 3

NSB No.3
1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

NSB No.6
1 2 3 4 5
4 5 2 3 1
5 3 4 1 2
3 1 5 2 4
2 4 1 5 3

For the proof of Theorem 25, we first consider onlyS5-action, forgettingD4-action.

Definition 26 (Normalized solution boards of diagonal 5-doku)
A normalized solution board (NSB for short) is the one such that the first row is given bya11 =

1,a12 = 2,a13 = 3,a14 = 4,a15 = 5.

We note that each equivalence class of solution boards under theS5-action contains a unique
normalized solution board.

Proposition 27 (8 NSB’s of diagonal 5-doku)
There are exactly 8 normalized solution boards as shown below.

Communications of JSSAC Vol. 2 11

NSB No.1
1 2 3 4 5
2 4 5 3 1
5 3 2 1 4
3 1 4 5 2
4 5 1 2 3

NSB No.2
1 2 3 4 5
2 5 4 1 3
4 3 2 5 1
5 4 1 3 2
3 1 5 2 4

NSB No.3
1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

NSB No.4
1 2 3 4 5
3 5 2 1 4
5 1 4 3 2
4 3 5 2 1
2 4 1 5 3

NSB No.5
1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2

NSB No.6
1 2 3 4 5
4 5 2 3 1
5 3 4 1 2
3 1 5 2 4
2 4 1 5 3

NSB No.7
1 2 3 4 5
5 3 1 2 4
2 5 4 3 1
4 1 2 5 3
3 4 5 1 2

NSB No.8
1 2 3 4 5
5 3 4 1 2
4 5 2 3 1
2 4 1 5 3
3 1 5 2 4

Proof Let I be the ideal of the puzzle with the initial conditiona11 = 1,a12 = 2,a13 = 3, a14 =

4,a15 = 5. Then we get the desired 8 solution boards by applying the Inoue solver (algorithm) toI
(see Appendix [6, Subsection 2.1]).

Proof of Theorem 25. If we transform the 8 NSB’s with theD4-action and then normalize, it is
easy to check that there are 3 orbits:{No.1, 2,4,7}, {No.3, 5}, {No.6,8}. Thus NSB No.1,3,6 are the
complete representatives of the solution boards underS5 × D4 action.

We next enumerate the diagonal 5-doku puzzles with a unique solution.

Theorem 28 (Number of the diagonal 5-doku puzzles with a unique solution)
(i) There exist exactly 30964554720 diagonal 5-doku puzzles with a unique solution.
(ii) The irredundant puzzles exist only if the number of clues is 4,5,6, and the number of them is
7639680 in all.

Proof (i) Let S be a diagonal 5-doku puzzle with a unique solutionT. By a suitable transfor-
mation, we may assumeT is one of the three NSB’s in Theorem 25. Now, by a time-consuming
computation by Magma (see Appendix [6, Subsection 2.2]), we find that the number of puzzles
which has the NSB No.1 (resp. No.3, No.6) as the unique solution is 32258030 (resp. 32246636,
32256282). Thus there are

(32258030× 4+ 32246636× 2+ 32256282× 2)× 5! = 30964554720

puzzles with a unique solution in all. Note that we do not take theS5 × D4-action into account for
this enumeration.
(ii) By a similar computation as in (i), we can check that there are no irredundant puzzles which
have NSB No.1, No.3, No.6 as a unique solution withk clues (k ≥ 7). Also there are exactly 7996
(resp. 7920, 7920) irredundant puzzles which has No.1 (resp. No.3, No.6) as a unique solution (see
Appendix [6, Subsection 2.2]). Thus there are

(7996× 4+ 7920× 2+ 7920× 2)× 5! = 7639680

irredundant puzzles in all.

We have a following impressive corollary.

Corollary 29 (The number of minimal and maximal clues of diagonal 5-doku)
(i) The minimal number of clues of the diagonal 5-doku puzzles with a unique solution is 4.
(ii) The maximal number of the clues of the irredundant ones is 6.

12 Communications of JSSAC Vol. 2

Remark 30
(i) Theorem 28 is significant in itself since this kind of precise enumeration seems to be known
only for 4-doku so far ([4]).
(ii) To accomplish the computation for Theorem 28, we spent about a month using several Windows
PC’s simultaneously.

The following theorem is our second main result.

Theorem 31 (Inoue invariants of diagonal 5-doku)
All the diagonal 5-doku puzzles with a unique solution have the trivial Inoue invariant except the
following two puzzlesW1,W2 (moduloS5×D4-action). These two have the Inoue invariant(4,2,2).

Table 5:The diagonal 5-doku puzzles with the non-trivial Inoue invariant (4,2,2)
W1

1 4 5

3 1 5

W2
1

4

3 1
4 5

Proof By Theorem 28 (ii), the irredundant diagonal 5-doku puzzles exist only if the number of
clues is 4,5,6.

Now, letS be a puzzle withk (k = 4,5,6) clues with a unique solutionT. By a suitable 5-doku
symmetry transformation, we may assumeT is one of the 3 NSB’s in Theorem 25. We can check
that all the puzzles with a unique solution obtained by deletingl (l = 19,20,21) cells from these 3
solution boards have the trivial Inoue invariant exceptW1 andW2 by a computation with Magma
(see Appendix [6, Subsection 2.3]).

Furthermore, if we add any number contained in the solution board toW1 andW2, it is easy to
check that the resulting puzzles all have the trivial Inoue invariant. Thus by Proposition 23, we are
done.

Remark 32
We note thatWi (i = 1,2) has 6 clues, whereas the minimal number of clues of the puzzles with
a unique solution is 4. Since it is natural to expect that the fewer the clues, the more difficult the
puzzles are, this is an interesting phenomenon.

We finally report a partial result on the Inoue invariants of the diagonal 6-doku puzzles, whose
proof we omit since it is similar to that of Theorem 31.

Theorem 33 (Inoue invariants of diagonal 6-doku restricted to the 5-clues case)
(i) The minimal number of clues of the diagonal 6-doku puzzles with a unique solution is 5.
(ii) There exist exactly 44542080 puzzles with 5 clues which have a unique solution. Among them,
there exist 10540800 puzzles with a non-trivial Inoue invariant. The biggest Inoue invariant of
them is(20,12,5), and the puzzle with this Inoue invariant(20,12,5) is the following one in Table
6.

Communications of JSSAC Vol. 2 13

Table 6:The diagonal 6-doku puzzle with 5 clues with the biggest Inoue invariant (20,12,5)

　 　 　 　 5 　
　

4
3

1 6

Remark 34
(i) As Theorem 33 shows, there are many diagonal 6-doku puzzles with a non-trivial Inoue invariant
unlike 4-doku and diagonal 5-doku puzzles, even restricted to the case of minimal 5 clues.

We also note that, as seen from the case of diagonal 5-doku puzzles, the number of clues of the
puzzle with the biggest Inoue invariant may be larger than the minimal number of clues (Remark
32). Hence it may well happen that the diagonal 6-doku puzzle with the biggest Inoue invariant
(unknown so far) hasp clues wherep > 5.
(ii) The reason that Theorem 33 refers only to the case of 5 clues is that it takes too much time
for this computation. We estimate that it will take several years (maybe more) to achieve the same
computation for all the number of clues. Thus, in the case of diagonal 6-doku, we have not obtained
a complete result as in the case of diagonal 5-doku.

References

[1] Bosma, W., Cannon, J., Fieker, C. and Steel, A. (eds.),Handbook of Magma functions, Edition
2.18, http://magma.maths.usyd.edu.au/magma/ (2011).

[2] Cox, D., Little, J. and O’Shea, D.,Ideals, Varieties, and Algorithms, third ed., Springer
(2007).

[3] Inoue, S., Efficient Singleton Set Constraint Solving by Boolean Gröbner Bases,Communi-
cations of JSSAC1(2012), 27-37.

[4] Minami, S., Harikae, S. and Nakano, T., Enumeration of the 4-doku puzzles with a unique
solution (in Japanese),Bulletin of JSSAC18(2012), No.2, 21-24.

[5] Nakano, T., Minami, S., Harikae, S., Arai, K. and Watanabe, H., On the Inoue invariant of
a system of Boolean polynomial equations and its applications to puzzles of Sudoku type,
preprint (2012).

[6] Nakano, T., Arai, K. and Watanabe, H., Appendix to the note "On the Inoue invariants of
puzzles of Sudoku type", http://math.ru.dendai.ac.jp/~nakano/research.html (2013).

[7] Rosenhouse, J. and Taalman, L.,Taking Sudoku Seriously, Oxford University Press (2011).

[8] Sato, Y., A New Type of Canonical Gröbner Bases in Polynomial Rings over Von Neumann
Regular Rings, in:Proceedings of ISSAC(1998), ACM press, 317-321.

[9] Sato, Y., Inoue, S., Suzuki, A. and Nabeshima, K., Boolean Gröbner Bases and Sudoku,
preprint (2008).

[10] Sato, Y., Inoue, S., Suzuki, A., Nabeshima, K. and Sakai, K., Boolean Gröbner bases.J. of
Symbolic Computation46(2011), 622-632.

14 Communications of JSSAC Vol. 2

[11] Weispfenning, V., Gröbner Bases in Polynomial Ideals over Commutative Regular Rings, in:
Davenport, E.(ed.),EUROCAL’87, Springer LNCS378(1989), 336-347.

Communications of JSSAC (2016)
Vol. 2, pp. 15 – 32

Approximate Polynomial GCD over Integers
with Digits-wise Lattice

Kosaku Nagasaka∗

Kobe University

(Received 29/Aug/2014 Accepted 3/Mar/2015)

Abstract

For the given coprime polynomials over integers, we change their coefficients slightly over in-
tegers so that they have a greatest common divisor (GCD) over integers. That is an approximate
polynomial GCD over integers. There are only two algorithms known for this problem. One is
based on an algorithm for approximate integer GCDs. The other is based on the well-known
subresultant mapping and the lattice basis reduction. In this paper, we give an improved algo-
rithm of the latter with a new lattice construction process by which we can restrict the range of
perturbations. This helps us for computing approximate polynomial GCD over integers of the
input erroneous polynomials having a priori errors on some digits of their coefficients.

Key words: Approximate Polynomial GCD, Lattice Basis Reduction

1 Introduction

Symbolic numeric algorithms for polynomials are very important, especially for practical com-
putations since we have to operate with empirical polynomials having numerical errors on their
coefficients. Recently, for those erroneous polynomials, many algorithms have been introduced,
approximate univariate GCD and approximate multivariate factorization for example. However,
for polynomials over integers having erroneous coefficients (e.g. rounded from empirical data),
changing their coefficients over reals does not remain them in the polynomial ring over integers,
hence we need algorithms designed over integers. In this paper, we discuss about computing a
polynomial GCD of univariate or multivariate polynomials over integers approximately. Here,
“approximately” means that we compute a polynomial GCD over integers by changing their coef-
ficients slightly over integers so that the input polynomials still remain over integers. We improve
one of known algorithms for computing an approximate polynomial GCD over integers defined
below.

Definition 1 (Approximate Polynomial GCD Over Integers)
Let f (x⃗) andg(x⃗) be polynomials in variables⃗x = x1, . . . , xℓ overZ, and letε be a small positive
integer. If they satisfyf (x⃗) = t(x⃗)h(x⃗) + ∆ f (x⃗), g(x⃗) = s(x⃗)h(x⃗) + ∆g(x⃗) andε = max{∥∆ f ∥, ∥∆g∥}

∗nagasaka@main.h.kobe-u.ac.jp

c⃝ 2016 Japan Society for Symbolic and Algebraic Computation

16 Communications of JSSAC Vol. 2

for some polynomials∆ f ,∆g ∈ Z[x⃗], then we say that the above polynomialh(x⃗) is anapproximate
GCD over integers. We also say thatt(x⃗) ands(x⃗) areapproximate cofactors over integers, and we
say that theirtolerance is ε. (∥p∥ denotes a suitable norm ofp(x⃗).) ▹

Example 2
Let f (x1, x2) andg(x1, x2) be the following polynomials over integers, which are relatively prime
and supposed to have numerical errors on their coefficients.

f (x1, x2) = 1530x2
1x2

2 − 3601x2
1x2 + 2109x2

1 − 171x1x2
2

+ 3506x1x2 − 3703x1 − 699x2
2 + 94x2 + 1561,

g(x1, x2) = 2755x2
1x2

2 − 5851x2
1x2 + 3110x2

1 − 5118x1x2
2

+ 5296x1x2 + 351x1 + 2275x2
2 − 1098x2 − 3822.

We would find the following approximate GCD over integers, where the underlined figures are
slightly changed to make them having a non-trivial polynomial GCD.

f (x1, x2) ≈ (34x1x2 − 37x1 − 25x2 + 39)× (45x1x2 − 57x1 + 28x2 + 40)
= 1530x2

1x2
2 − 3603x2

1x2 + 2109x2
1 − 173x1x2

2
+ 3504x1x2 − 3703x1 − 700x2

2 + 92x2 + 1560,
g(x1, x2) ≈ (34x1x2 − 37x1 − 25x2 + 39)× (81x1x2 − 84x1 − 91x2 − 98)

= 2754x2
1x2

2 − 5853x2
1x2 + 3108x2

1 − 5119x1x2
2

+ 5294x1x2 + 350x1 + 2275x2
2 − 1099x2 − 3822.

In this case,∆ f = 2x2
1x2+2x1x2

2+2x1x2+x2
2+2x2+1, ∆g = x2

1x2
2+2x2

1x2+2x2
1+x1x2

2+2x1x2+x1+x2

andε = 2 in the∞-norm. ▹

We note that for polynomials over the complex numbers, there are many studies and various
algorithms ([12, 6, 4, 15, 31, 30, 5, 32, 23, 34, 33, 25, 13, 22, 9, 24, 8, 16, 21, 26, 27, 20, 2, 3, 7]).
Hence one may think that we can compute an approximate GCD over integers by rounding the re-
sult by those algorithms since they compute approximate GCDs over complex numbers. However,
it is difficult to make them as polynomials over integers since the resulting tolerance easily becomes
large and far from the given polynomials (see [18]). Therefore, we need algorithms designed for
polynomials over integers.

For computing approximate GCD over integers, there are two known algorithms. One is based
on the result from approximate integer common divisors by Howgrave-Graham ([11]). The other is
based on the well-known subresultant mapping and the lattice basis reduction (the LLL algorithm
[14]). The former algorithm is originally proposed by von zur Gathen and Shparlinski ([29]) at
LATIN 2008 and revised by von zur Gathen et al ([28]). Their algorithm only works for very
tiny tolerances and one of input polynomialsf (x⃗) andg(x⃗) must be given exactly and can not be
perturbed. However, the algorithm always can compute an approximate GCD over integers if the
given polynomials satisfy the certain conditions. The latter algorithm is proposed by the present
author ([17]) at ISSAC 2008 and revised ([18]). In contrast with that by von zur Gathen et al., this
algorithm works for not only very tiny but also small tolerances and all the given polynomials can
be perturbed (as described in the definition). However, any theoretical condition which guarantees
that the algorithm can compute an approximate GCD over integers, is not given.

1.1 The problem to be solved

In this paper, we give an improved algorithm with a new lattice construction process by which we
can restrict the range of perturbations in some cases. This helps us for computing approximate

Communications of JSSAC Vol. 2 17

polynomial GCD over integers of the input erroneous polynomials having a priori errors on some
digits of their coefficients. For example, the known methods can not compute any approximate
polynomial GCD over integers for the following polynomials.

f (x) = −302260x4 − 174933528x3 + 45943440x2 + 231047900996x− 143756712
≈

(
889x2 + 512701x− 319

) (
−340x2 − 692x+ 450648

)
− 2× 103x2,

g(x) = 526407460x4 + 303589900698x3 − 690875197x2 − 323202349x+ 205289
≈

(
889x2 + 512701x− 319

) (
592140x2 − 978x− 631

)
− 5× 103x4 + 4× 103.

In this case, the tolerance (the absolute error) is 5× 103 in the∞-norm and the relative error is not
small in relation to the smallest coefficients hence computing an approximate GCD over integers
for this pair of polynomials is not so easy. In fact, the known algorithms ([17],[18]) can not detect
any expected result.

One may think that this example seems to be odd. However, this situation possibly occurs in
some computations with multi-precision integers (each integer is represented as an array of word
size integers). For example, transmission errors on some elements of the array, computing lower
and higher digits separately and so on. In fact, the above pair of polynomials has perturbations
on the second digit only (as an array of 103 integers) hence they are in this case. Moreover, this
is also useful for simplifying algebraic expressions (e.g. each simplicity of expression is heavily
depending on the number of terms not the magnitude of coefficients in general) as in the following
polynomial.

f (x1, x2) =
(
286x2

2 − 54821x2 − 3907787
)

x2
1

+
(
203830x2

2 + 11276643x2 + 35293
)

x1 − 17930x2
2 − 990865x2 + 54765

= (22x2 + 1217)((13x2 − 3211)x2
1 + (9265x2 + 29)x1 − 815x2 + 45)+ 5× 102x2x1.

For this problem, we review the algorithm given by the present author ([18]) in Section2. We
give a new lattice construction process in Section3, including various numerical examples. In
Section4, we give some remarks for this extension. We note that the present article is an ex-
tended work of the presentation ([19]) with the extended abstract at SNC 2011 (Symbolic-Numeric
Computation, June 7-9, 2011, San Jose, California), and the ideal of this paper is based on the
preliminary presentation about computing approximate GCD of integers (not polynomials) by the
present author in Research Institute for Mathematical Sciences, Kyoto University in 2010.

2 Approximate GCD by Lattice Basis Reduction

We review the known result ([17],[18]) briefly. Let f (x⃗) andg(x⃗) have total degreesn = tdeg(f)
andm= tdeg(g), respectively. We call the following mappingSr (f ,g) the subresultant mapping of
f (x⃗) andg(x⃗) of orderr.

Sr (f ,g) :
Pm−r−1 × Pn−r−1 → Pn+m−r−1

(s(x⃗), t(x⃗)) 7→ s(x⃗) f (x⃗) + t(x⃗)g(x⃗)

where r = 0, . . . ,min{n,m} − 1 andPd denotes the set of polynomials in variablesx1, . . . , xℓ,
of total degreed or less. We denote the coefficient vector of polynomialp(x⃗) by vect(p) w.r.t.
the lexicographic ascending order in this article. We note that any term order can be used for
representing coefficient vectors since the order is not essential. To see the number of elements
of a coefficient vector, we define the notation:βd,r =

(
d−r+ℓ
ℓ

)
hence the number of termsxi1

1 · · · x
iℓ
ℓ

18 Communications of JSSAC Vol. 2

satisfyingi1 + · · · + iℓ ≤ d can be denoted byβd,0. Thek-th convolution matrixCk(f) is defined
to satisfyCk(f)vect(p) = vect(f p) for any polynomialp(x⃗) of total degreek − 1 or less, where
vect(p) ∈ Zβk−1,0×1 andCk(f) ∈ Zβn+k−1,0×βk−1,0. We have the matrix representation of the subresultant
mapping:Sylr (f , g) = (Cm−r (f) Cn−r (g)) of size (βn+m−1,r) × (βm−1,r + βn−1,r), satisfying

Sr (f ,g) :
Pm−r−1 × Pn−r−1 → Pn+m−r−1

(vect(s) t vect(t) t)t 7→ vect(s f + tg) = Sylr (f ,g)(vect(s) t vect(t) t)t.

This mapping is the same as in [10], and has the same property thatf (x⃗)/t(x⃗) andg(x⃗)/s(x⃗)
is the GCD of f (x⃗) and g(x⃗) if r is the greatest integer such that this mapping is not injective.
Hence by computing null vectors ofSylr (f ,g) approximately for the given coprime polynomials,
we can compute candidate vectors of approximate cofactors over integers. This procedure can be
done by finding short vectors by the well-known LLL algorithm ([14]). For this, we construct the
lattice generated by the row vectors ofL(f ,g, r, c) which is defined as the following matrix where
r denotes the order of the subresultant mapping.

L(f ,g, r, c) = (Eβn−1,r+βm−1,r | c · Sylr (f ,g)t)

whereEi denotes the identity matrix of sizei × i andc ∈ Z. The size ofL(f ,g, r, c) is (βn−1,r +

βm−1,r) × (βn−1,r + βm−1,r + βn+m−1,r). We note that we mark a block matrix with a vertical bar to
distinguish the identity matrix representing a collection of linear combinations from the matrix
formed by the coefficient vectors.

However, the short vectors found are only candidate cofactorst(x⃗) and s(x⃗) ∈ Z[x⃗] such that
s(x⃗) f (x⃗)+ t(x⃗)g(x⃗) ≈ 0, andf (x⃗) andg(x⃗) may not be divisible byh(x⃗). To compute an approximate
GCD from the candidate cofactors, we apply the LLL algorithm again to the lattice generated by
the row vectors of the following matrixH(f ,g, r, c, t, s) of size (βr+1,0+1)× (βn,0+βm,0+βr+1,0+1).

H(f ,g, r, c, t, s) =

(
Eβr+1,0+1

∣∣∣∣∣∣ c · vect(f)t c · vect(g)t

c ·Cr+2(−t)t c ·Cr+2(s)t

)
.

We have the following lemmas in [18].

Lemma 3
Let B be a bound of maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗). For
the lattice generated by the rows ofL(f ,g, r, cL) with cL = 2(βn−1,r+βm−1,r−1)/2

√
βn−1,r + βm−1,r B, the

LLL algorithm can find a short vector whose firstβn−1,r + βm−1,r elements are a multiple of the
transpose of the coefficient vectors of cofactors off (x⃗) andg(x⃗) by their GCD, ifr is the greatest
integer such that the subresultant mapping is not injective. ▹

Lemma 4
Let B be a bound of maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗). For
the lattice generated by the row vectors ofH(f ,g, r, cH , t, s) with cH = 2βr+1,0/2

√
βr+1,0 + 1B + 1,

the LLL algorithm can find a short vector whose2-nd, . . ., (βr+1,0+1)-th elements are a multiple of
the transpose of the coefficient vector of the GCD off (x⃗) andg(x⃗), if r is the greatest integer such
that the subresultant mapping is not injective. ▹

For example, we consider the following pair of erroneous polynomials.

f (x) = 20x2 + 18x− 27 = (4x+ 7)(5x− 4)− x+ 1,
g(x) = 29x2 + 61x+ 19 = (4x+ 7)(7x+ 3)+ x2 − 2.

Communications of JSSAC Vol. 2 19

We construct the following matrixL(f ,g, r, c) with r = 0 andc = 1, and apply the LLL algorithm
to the lattice generated by the row vectors ofL(f ,g, r, c).

1 0 0 0 19 61 29 0
0 1 0 0 0 19 61 29
0 0 1 0 −27 18 20 0
0 0 0 1 0 −27 18 20

→

−4 5 −3 −7 5 −14 3 5
−5 6 −3 −9 −14 −2 −1 −6
−7 9 −5 −13 2 5 12 1
−4 5 −3 −8 5 13 −15 −15

 .
We take the first row vector as candidate cofactors (we note that we have to seek the candidate

through all the short vectors). We construct the following matrixH(f ,g, r, c, t, s) with c = 1 and
apply the LLL algorithm, to compute an approximate GCD. 1 0 0 −27 18 20 19 61 29

0 1 0 −4 5 0 3 7 0
0 0 1 0 −4 5 0 3 7

→
 1 −7 −4 1 −1 0 −2 0 1

0 1 0 −4 5 0 3 7 0
0 0 1 0 −4 5 0 3 7

 .
Hence, we get 4x + 7 as an approximate polynomial GCD over integers and 5x − 4 and 7x + 3

as approximate cofactors. We note that there are more complicated examples, some lemmas and
techniques for decreasing the computing-time (see [17],[18]) though we do not show them here.

3 Digits-wise Lattice

The algorithms introduced in [17] and [18] work well for nearby polynomials having polynomial
GCD, according to the numerical experiments therein. However, they can not detect any approxi-
mate GCD for the following type of polynomials as noted in the introduction. We note again that
this problem is not so special in practice (multi-precision integers, simplifying algebraic expres-
sions and so on). It could be more general word sizes (e.g. 232) though the word size we use here
is 101 since this is easy to understand and does not exceed the paper width.

f (x) = 32x3 + 76x2 + 22x+ 15 = (4x+ 5)(8x2 + 4x+ 3)+ 20x2 − 10x,
g(x) = 10x3 + 53x2 + 59x+ 40 = (4x+ 5)(5x2 + 7x+ 6)− 10x3 + 10.

To extend the algorithms for the above case (all the coefficients have a priori errors on only the
limited number of digits), we introduce the following digits-wise lattice instead ofL(f ,g, r, c) by
extending the coefficient vector to the digits-wise.

L(f ,g, r, c) =

1 0 0 0 0 0 40 59 53 10 0 0
0 1 0 0 0 0 0 40 59 53 10 0
0 0 1 0 0 0 0 0 40 59 53 10
0 0 0 1 0 0 15 22 76 32 0 0
0 0 0 0 1 0 0 15 22 76 32 0
0 0 0 0 0 1 0 0 15 22 76 32

⇒

1 0 0 0 0 0 4 0 5 9 5 3 1 0 0 0 0 0
0 1 0 0 0 0 0 0 4 0 5 9 5 3 1 0 0 0
0 0 1 0 0 0 0 0 0 0 4 0 5 9 5 3 1 0
0 0 0 1 0 0 1 5 2 2 7 6 3 2 0 0 0 0
0 0 0 0 1 0 0 0 1 5 2 2 7 6 3 2 0 0
0 0 0 0 0 1 0 0 0 0 1 5 2 2 7 6 3 2

.

However, the row spaces of the above matrices are not the same and they are essentially different
since digit-wise operations can not follow the carrying and borrowing operations for integers. For
computing an approximate GCD we need to guarantee that the row space has the coefficient vectors
corresponding to their cofactors, hence we have to perform some artificial carrying and borrowing
operations in this row space. To do this, we add some extra row vectors representing carry and

20 Communications of JSSAC Vol. 2

borrow digits to the matrix as follows.

1 0 0 0 0 0 4 0 5 9 5 3 1 0 0 0 0 0
0 1 0 0 0 0 0 0 4 0 5 9 5 3 1 0 0 0
0 0 1 0 0 0 0 0 0 0 4 0 5 9 5 3 1 0
0 0 0 1 0 0 1 5 2 2 7 6 3 2 0 0 0 0
0 0 0 0 1 0 0 0 1 5 2 2 7 6 3 2 0 0
0 0 0 0 0 1 0 0 0 0 1 5 2 2 7 6 3 2
0 0 0 0 0 0−1 10 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10

extra rows.

Moreover, in this case, if we can assume that only the second digit has a priori error hence we
multiple the columns except ones corresponding to the second digit by 100 as a penalty weight.
The LLL algorithm gives the following result for the lattice generated by row vectors of this scaled
matrix.

1 −2 6 −2 1 −5 1 0 −5 0 −3 0 16 0 −5 0 −10 0
3 4 8 −6 −7 −5 3 0 10 0 3 0−12 0 −14 0 −8 0
0 −10 0 10 0 0 15 0 −18 0 17 0−21 0 −10 0 0 0
2 −4 2 −4 2 0 2 0 −10 0 −31 0 −5 0 13 0 2 0
6 −2 −4 −2 6 0 21 0 32 0 2 0 11 0 −4 0 −4 0
−1 2 −16 2 9 5 −1 0 20 0 −15 0 1 0 −16 0 0 0

2 4 2 −6 −3 0 −1 0 10 100−10 0 −7 0 5 0 2 0
−3 −1 −4 6 1 0 −3 0 −7 0 10 0 −5 −100 −19 0 −4 0

1 −2 4 −2 −1 0 1 0 −8 0 −8 100 0 0 16 0 4 0
3 −5 −1 4 1 0 18 0 8 0 15 0 −9 0 −7 −100 −1 0
−3 −2 −4 6 3 1 −3 0 −8 0 10 0 7 0 −6 0 −1 200

2 −4 2 1 2 0 9 500 1 0 7 0 11 0 13 0 2 0

.

We can see that the resulting matrix has the row vector corresponding to the coefficient vectors of
expected approximate cofactors (8x2 + 4x+ 3, 5x2 + 7x+ 6) on the second row underlined. In the
following subsections, we formalize this process into definitions and an algorithm.

3.1 Definitions of Digits-wise Representation

We denote the canonical form of lengthw of the baseb digits in the integera as

∀a ∈ Z, digitsb,w(a) = {aw−1, . . . , a1,a0} such that

a =
∑w−1

i=0 aibi and

{
0 ≤ sign(a)ai < b (i = 0, . . . ,w− 2)
sign(a) = sign(ai) (i = w− 1).

For example, we have digits10,2(123)= {12,3}, digits10,3(123)= {1,2, 3}, digits10,4(123)= {0,1,2,3}
and digits10,3(−123) = {−1,−2,−3}. We extend the coefficient vector of polynomialp(x⃗) to the
digits-wise operations and denote it by vectb,w(p) whereb and w are the base number and the
length of the list of digits, respectively, such that

vectb,w(p) = {digitsb,w(pe) . . . digitsb,w(p0)}t where vect(p) = {pe . . . p0}t.

Communications of JSSAC Vol. 2 21

For example, we have vect10,2(32x3 + 76x2 + 22x + 15) = {1,5,2,2,7,6,3,2}t. We note that the
sizes of the coefficient vectors vectb,w(f) and vectb,w(g) of f (x⃗) andg(x⃗) in the digits-wise form are
w× βn,0 andw× βm,0, respectively. Therefore, their inverse mappings digits−1

b,w(·) and vect−1
b,w(·) can

be defined as follows.

digits−1
b,w(a⃗) =

w−1∑
i=0

aib
i , vect−1

b,w(p⃗) = vect−1(digits−1
b,w(p⃗w×βn,0), . . . , digits−1

b,w(p⃗0))

wherea⃗ = {aw−1, . . . ,a1,a0}t ∈ Zw and p⃗ = {p⃗t
w×βn,0
, . . . , p⃗t

0}t ∈ Zw×βn,0, and vect−1(·) is the conven-
tional mapping from the coefficient vector to the polynomial.

We also extend thek-th convolution matrix and the matrix representation of the subresul-
tant mapping to the digits-wise operations in the same manner and denote them byCk,b,w(f)
andSylr,b,w(f ,g), respectively. We note that in general they do not satisfyCk,b,w(f)vectb,w(p) =
vectb,w(f p) for any polynomialp(x⃗) of total degreek − 1, however this is not the matter in our
approach. Moreover, we have vectb,1(f) = vect(f), Ck,b,1(f) = Ck(f) andSylr,b,1(f , g) = Sylr (f ,g).

For the digits-wise lattice introduced in the beginning of this section, the carrying and borrow-
ing are important hence we define the following carry-borrow vectorsz⃗b,w,i (i = 0,1, . . . ,w−2) and
matrixZb,w, satisfying digits−1

b,w(⃗zb,w,i) = 0 (i = 0,1, . . . ,w− 2).

z⃗b,w,i = {0, . . . , 0︸ ︷︷ ︸
i

,−1,b,0, . . . , 0︸ ︷︷ ︸
w−i−2

}t ∈ Zw, Zb,w = {⃗zb,w,0 . . . z⃗b,w,w−2}t ∈ Z(w−1)×w.

We also extendL(f ,g, r, c) andH(f ,g, r, c, t, s) as follows and denote them byLb,w(f ,g, r, c) and
Hb,w(f ,g, r, c, t, s), respectively.

Lb,w(f ,g, r, c) =

Eβn−1,r+βm−1,r c · Sylr,b,w(f ,g)t

c · Zb,w

c · Zb,w

. . .

c · Zb,w

,

Hb,w(f ,g, r, c, t, s) =

Eβr+1,0+1
c · vectb,w(f)t c · vectb,w(g)t

c ·Cr+2,b,w(−t)t c ·Cr+2,b,w(s)t

c · Zb,w

c · Zb,w

. . .

c · Zb,w

.

The sizes ofLb,w(f ,g, r, c) andHb,w(f ,g, r, c, t, s) are ((βn−1,r + βm−1,r)+ (w−1)βn+m−1,r)× (βn−1,r +

βm−1,r +wβn+m−1,r) and (βr+1,0+1+ (w−1)(βn,0+ βm,0))× (βr+1,0+1+w(βn,0+ βm,0)), respectively.

Example 5
We show some examples ofLb,w(f ,g, r, c) andHb,w(f ,g, r, c, t, s) for

f (x) = 32x3 + 56x2 + 32x+ 15 = (4x+ 5)(8x2 + 4x+ 3), t(x) = −8x2 − 4x− 3,
g(x) = 20x3 + 53x2 + 59x+ 30 = (4x+ 5)(5x2 + 7x+ 6), s(x) = 5x2 + 7x+ 6.

22 Communications of JSSAC Vol. 2

We have the following matrices for the base numberb = 10and lengthw = 2 if we assume that the
order of subresultant mapping is0 andc = 1.

L10,2(f ,g, 0,1) =

1 0 0 0 0 0 3 0 5 9 5 3 2 0 0 0 0 0
0 1 0 0 0 0 0 0 3 0 5 9 5 3 2 0 0 0
0 0 1 0 0 0 0 0 0 0 3 0 5 9 5 3 2 0
0 0 0 1 0 0 1 5 3 2 5 6 3 2 0 0 0 0
0 0 0 0 1 0 0 0 1 5 3 2 5 6 3 2 0 0
0 0 0 0 0 1 0 0 0 0 1 5 3 2 5 6 3 2
0 0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10

,

H10,2(f ,g,0,1, t, s) =

1 0 0 1 5 3 2 5 6 3 2 3 0 5 9 5 3 2 0
0 1 0 0 3 0 4 0 8 0 0 0 6 0 7 0 5 0 0
0 0 1 0 0 0 3 0 4 0 8 0 0 0 6 0 7 0 5
0 0 0 −1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 10 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0−1 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0−1 10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 10

.

▹

For any fixed non-negative integern, vectb,w(·) and vect−1
b,w(·) can be thought as linear mappings

overZ betweenPn andZw×βn,0 wherePn is a submodule ofZ[x⃗] defined in the previous section.
However,Pn andZw×βn,0 are not isomorphic by these mappings. We define the quotient module of
Zw×βn,0 by the equivalence relation “⃗f ≡ g⃗ iff vect−1

b,w(f⃗) = vect−1
b,w(g⃗)” or its subspace generated by

the row vectors of block diagonal matrix of{Zb,w, . . . ,Zb,w}, and we denote this quotient module
by Zw×βn,0

b,w . By these definitions,Pn is isomorphic toZw×βn,0

b,w by vectb,w(·) and vect−1
b,w(·).

Lemma 6
Let B be a bound of maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗). For
the lattice generated by the row vectors ofLb,w(f ,g, r, cL) with cL = 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2√
βn−1,r + βm−1,r B, the LLL algorithm can find a short vector whose firstβn−1,r +βm−1,r elements are

a multiple of the transpose of the coefficient vectors of cofactors off (x⃗) andg(x⃗) by their GCD, if
r is the greatest integer such that the subresultant mapping is not injective. ▹

Proof There are cofactorst(x⃗) and s(x⃗) of f (x⃗) andg(x⃗) by their GCD, respectively, ifr is the
greatest integer such that the subresultant mapping is not injective. Hence, the lattice generated
by row vectors ofLb,w(f ,g, r, cL) has the following vector⃗umin sinceZw×βn+m−1,r

b,w is isomorphic to
Pn+m−r−1 as shown above.

u⃗min = (the transpose of the coefficient vectors ofs(x⃗) andt(x⃗), 0 · · · 0︸ ︷︷ ︸
w×βn+m−1,r

).

Communications of JSSAC Vol. 2 23

The LLL algorithm can find a short vectoru⃗ satisfying

∥u⃗∥2≤ 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2 ∥u⃗min∥2 .

Since all the non-zero elements of rightw × βn+m−1,r columns of any row vectors in the lattice
which is generated by the row vectors ofLb,w(f ,g, r, cL) must be larger than or equal tocL =
2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2

√
βn−1,r + βm−1,r B in absolute value, the rightw × βn+m−1,r columns of

the found short vector⃗u must be zeros. This means that the transpose of the vector formed by the
first βn−1,r + βm−1,r elements of⃗u is in the null space ofSylr,b,w(f , g) hence in that ofSylr (f ,g) and
the lemma is proved.

Lemma 7
Let B be the maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗). For the lattice
generated by the row vectors ofHb,w(f ,g, r, cH , t, s) with cH = 2(βr+1,0+(w−1)(βn,0+βm,0))/2

√
βr+1,0 + 1B

+1, the LLL algorithm can find a short vector whose2-nd, . . ., (βr+1,0+1)-th elements are a multiple
of the transpose of the coefficient vector of the GCD off (x⃗) andg(x⃗), if r is the greatest integer
such that the subresultant mapping is not injective. ▹

Proof The proof is similar to that of Lemma6.

We note that in Lemma7 the short vectors corresponding to the GCD must have±1 on the
first element since this means the number of coefficient vectors off (x⃗) andg(x⃗) reduced by the
coefficient vectors of cofactors. Moreover, this can be thought as the closest vector problem (CVP)
hence it may be possible to use Babai’s nearest plane algorithm ([1]) instead of the method based
on the lattice in Lemma7.

Example 8
For polynomials in Example5, we have the following matrices with the base numberb = 10, length
w = 2, orderr = 0, cL = 9658andcH = 4829if we use the Landau-Mignotte bound off (x) and
g(x).

L10,2(f ,g, 0,9658)=

1 0 0 0 0 0 28974 0 48290 86922· · · 0 0 0 0
0 1 0 0 0 0 0 0 28974 0 · · · 19316 0 0 0
0 0 1 0 0 0 0 0 0 0 · · · 48290 28974 19316 0
0 0 0 1 0 0 9658 48290 28974 19316· · · 0 0 0 0
0 0 0 0 1 0 0 0 9658 48290· · · 28974 19316 0 0
0 0 0 0 0 1 0 0 0 0 · · · 48290 57948 28974 19316
0 0 0 0 0 0 −9658 96580 0 0· · · 0 0 0 0
0 0 0 0 0 0 0 0 −9658 96580 · · · 0 0 0 0
0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0
0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0
0 0 0 0 0 0 0 0 0 0 · · · −9658 96580 0 0
0 0 0 0 0 0 0 0 0 0 · · · 0 0 −9658 96580

,

24 Communications of JSSAC Vol. 2

H10,2(f ,g, 0,4829, t, s) =

1 0 0 4829 24145 14487 9658 24145· · · 43461 24145 14487 9658 0
0 1 0 0 14487 0 19316 0· · · 33803 0 24145 0 0
0 0 1 0 0 0 14487 0· · · 28974 0 33803 0 24145
0 0 0 −4829 48290 0 0 0· · · 0 0 0 0 0
0 0 0 0 0 −4829 48290 0· · · 0 0 0 0 0
0 0 0 0 0 0 0 −4829 · · · 0 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 0 0 0 · · · 48290 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 −4829 48290 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 −4829 48290

.

By the LLL algorithm we found the following short vectors and in fact their first rows are corre-
sponding to the coefficient vectors of cofactors and GCD off (x) andg(x).

L10,2(f ,g, 0,9658)⇒(
3 4 8 −6 −7 −5 0 0 0 0 · · · 0 0 0 0
−1 2 −2 0 0 1 −28974 0 0 9658· · · −9658 0 −9658 19316

)
,

H10,2(f ,g, 0,4829, t, s)⇒(
1 −5 −4 0 0 0 0 0 · · · 0 0 0 0 0
0 1 −1 0 14487 0 4829 0 · · · 4829 0 −9658 0 −24145

)
.

Note that 1) we show only the first and second shortest short vectors found though there are more
short vectors that are not corresponding to approximate cofactors and GCD, and 2) the LLL algo-
rithm can find the expected short vectors with much smallercL andcH in most cases. In fact, short
vectors in this example can be computed fromL10,2(f ,g, 0,10) andH10,2(f ,g,0,10, t, s). ▹

3.2 Algorithm in Digits-wise Representation

We consider the case introduced in the beginning of this section hence we assume that all the
coefficients have a priori errors on only the limited number of digits. For such polynomials, the
resulting toleranceε defined in Definition1 easily becomes large even though the norm of errors
in the digits-wise representation is small. We need to adapt the definition to the digits-wise rep-
resentation. By the following definition, we have digits-wise tolerancesε10,1 = ε = 20, ε10,2 = 2
and ε5,2 = 4 in the∞-norm for the pair off (x) = (4x + 5)(8x2 + 4x + 3) + 20x2 − 10x and
g(x) = (4x+ 5)(5x2 + 7x+ 6)− 10x3 + 10 for example.

Definition 9 (Digits-wise Approximate Polynomial GCD Over Integers)
Let f (x⃗) andg(x⃗) be polynomials in variables⃗x = x1, . . . , xℓ overZ, and letε be a small positive
integer. If they satisfyf (x⃗) = t(x⃗)h(x⃗)+∆ f (x⃗), g(x⃗) = s(x⃗)h(x⃗)+∆g(x⃗) andεb,w = max{∥vectb,w(∆ f)∥
, ∥vectb,w(∆g)∥} for some polynomials∆ f ,∆g ∈ Z[x⃗], then we say that the above polynomialh(x⃗)
is andigits-wise approximate GCD over integersw.r.t. the base numberb and lengthw. We also
say thatt(x⃗) and s(x⃗) aredigits-wise approximate cofactors over integers, and we say that their
tolerance is εb,w. (∥p∥ denotes a suitable vector norm.) ▹

For computing digits-wise approximate GCD over integers, the lemmas introduced above do
not guarantee that we can find the coefficient vectors of approximate cofactors and approximate
GCD by the LLL algorithm. However, as same as the algorithms in [18], the short vectors found
have a possibility that corresponding polynomialst(x⃗) ands(x⃗) ∈ Z[x⃗] satisfys(x⃗) f (x⃗)+ t(x⃗)g(x⃗) ≈

Communications of JSSAC Vol. 2 25

0, and they can be candidate approximate cofactors. Moreover, in the digits-wise representation,
we have to distinguish correct digits from erroneous digits in the digits-wise lattice. We define the
following diagonal weight matrixWb,w(kid, kc f , c,E, cE) to distinguish them.

Wb,w(kid, kc f , c,E, cE) = diag(1, . . . , 1︸ ︷︷ ︸
kid

w⃗, . . . , w⃗︸ ︷︷ ︸
kc f

), w⃗ = {cw−1, . . . , c0}, ci =

{
cE (i ∈ E)
c (i < E)

where we assume that the coefficients have a priori error on thei-th digits in the baseb representa-
tion for anyi ∈ E ⊂ Z>0, andc andcE are penalty weights that force the LLL algorithm to reduce
more correct digits (columns) than other digits and reduce more erroneous digits than coefficient
digits of candidate factors, respectively in the lattice basis. With this diagonal weight matrix, we
define the following matrices that are based onLb,w(f ,g, r,1) andHb,w(f ,g, r,1, t, s), respectively.

L̃b,w(f ,g, r, c,E, cE) = Lb,w(f ,g, r,1)Wb,w(βn−1,r + βm−1,r ,wβn+m−1,r , c,E, cE),
H̃b,w(f ,g, r, c, t, s,E, cE) = Hb,w(f ,g, r,1, t, s)Wb,w(βr+1,0 + 1,w(βn,0 + βm,0), c,E, cE).

Lemma 10
Let B be the maximum absolute value of coefficients of any factors off (x⃗) andg(x⃗) with perturba-
tions. For the lattice generated by the row vectors ofL̃b,w(f ,g, r, cL̃,E, cE) with the followingcL̃,
the LLL algorithm can find a short vector whose firstβn−1,r + βm−1,r elements are a multiple of the
transpose of the coefficient vectors of candidate approximate cofactors off (x⃗) andg(x⃗).

cL̃ = 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2
√

(βn−1,r + βm−1,r)B2 + (#E × βn+m−1,r)(b− 1)2c2
E

where#E is the number of elements inE. ▹

Proof Let t(x⃗) and s(x⃗) be one of candidate approximate cofactors off (x⃗) and g(x⃗), respec-
tively, satisfying∥ vectb,w(s(x⃗) f (x⃗) + t(x⃗)g(x⃗)) ∥≈ 0. In this case, the lattice generated by rows
of L̃b,w(f ,g, r, cL̃,E, cE) has the following vector⃗ucac for some integerr.

u⃗cac = (the transpose of the coefficient vectors ofs(x⃗) andt(x⃗), ∗ · · · ∗︸ ︷︷ ︸
w×βn+m−1,r

)

where all the correct digits are 0 on the rightw × βn+m−1,r elements denoted by∗. The shortest
vector of this lattice must be smaller than or equal tou⃗cac hence the LLL algorithm can find a short
vectoru⃗ satisfying

∥u⃗∥2 ≤ 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2 ∥u⃗cac∥2
≤ 2(βn−1,r+βm−1,r+(w−1)βn+m−1,r−1)/2

√
(βn−1,r + βm−1,r)B2 + (#E × βn+m−1,r)(b− 1)2c2

E

since the leftβn−1,r + βm−1,r elements of⃗ucac are bounded byB and the erroneous digits on the right
w× βn+m−1,r elements of⃗ucac are bounded by (b− 1)cE.

Therefore, all the correct digits on the rightw × βn+m−1,r elements of the found short vectoru⃗
must be zeros since all the non-zero correct digits on the rightw× βn+m−1,r elements of row vectors
in the lattice generated by the row vectors ofL̃b,w(f ,g, r, cL̃,E, cE) are larger than or equal tocL̃
in absolute value. This means that the polynomialst(x⃗) ands(x⃗) whose coefficient vectors are the
first βn−1,r + βm−1,r elements of⃗u satisfy

∥all the correct digits of vectb,w(s(x⃗) f (x⃗) + t(x⃗)g(x⃗))∥= 0

hence they are candidate approximate cofactors off (x⃗) andg(x⃗) though we may not guarantee
∥vectb,w(s(x⃗) f (x⃗) + t(x⃗)g(x⃗))∥≈ 0.

26 Communications of JSSAC Vol. 2

Lemma 11
Let B be the same maximum in Lemma10. For the lattice generated by the row vectors of
H̃b,w(f ,g, r, cH̃ , t, s,E, cE) with the followingcH̃ , the LLL algorithm can find a short vector whose
2-nd, . . ., (βr+1,0 + 1)-th elements are a multiple of the transpose of the coefficient vector of a
candidate approximate GCD off (x⃗) andg(x⃗).

cH̃ = 2(βr+1,0+1+(w−1)(βn,0+βm,0)−1)/2
√

(βr+1,0 + 1)B2 + (#E × (βn,0 + βm,0))(b− 1)2c2
E

where#E is the number of elements inE. ▹

Proof The proof is similar to that of Lemma10.

In general, there are short vectors that are not corresponding to approximate cofactors nor
approximate GCD with small perturbations (small tolerance) hence the above lemmas can not
guarantee that our algorithm always can find such a good approximate GCD. However, in most
cases, according to our numerical experiment in Section4, the following algorithm works well,
in which we usecE =

√
βn−1,r + βm−1,r B and cE =

√
βr+1,0 + 1B for L̃b,w(f , g, r, c,E, cE) and

H̃b,w(f ,g, r, c, t, s,E, cE), respectively. We again note thatcE is a scaling weight to make the LLL al-
gorithm do reducing more erroneous digits than coefficient digits of candidate cofactors and GCD,
as in the proofs of Lemma6 and Lemma10.

Algorithm 12 (digits-wise approximate GCD over integers)
Input : f ,g ∈ Z[x⃗],n = tdeg(f),m= tdeg(g), b,w ∈ Z>0, E ⊂ {0,1, . . . ,w− 1}.
Output : h, t, s ∈ Z[x⃗] satisfying f (x⃗) ≈ t(x⃗)h(x⃗) andg(x⃗) ≈ s(x⃗)h(x⃗), or “not found”.
1. ε← 1 and whileε < min{∥vectb,w(f)∥, ∥vectb,w(g)∥} do2–14

(or do once for the possible smallestε)
2. r ← min{n,m} − 1 and whiler ≥ 0 do3–13(or do once forr = 0)
3. c← max{∥ f ∥, ∥g∥} and construct a matrix̃Lb,w(f ,g, r, c,E, cE)
4. while c ≤ cL̃ do5–12(or do once forc = max{∥ f ∥, ∥g∥})
5. apply the LLL algorithm to the lattice generated by the row vectors of

L̃b,w(f ,g, r, c,E, cE)
6. for each basis vector sorted by the norm of rightwβn+m−1,r columns, do7–11
7. c′ ← max{∥ f ∥, ∥g∥} and construct a matrix̃Hb,w(f ,g, r, c, t, s,E, cE)
8. while c′ ≤ cH̃ do9–11(or do once forc′ = max{∥ f ∥, ∥g∥})
9. apply the LLL algorithm to the lattice generated by the row vectors of

H̃b,w(f ,g, r, c, t, s,E, cE)
10. let h(x⃗), t(x⃗), s(x⃗) be candidate approximate GCD and cofactors,

and outputh(x⃗), t(x⃗), s(x⃗) if max{∥vectb,w(f − th)∥, ∥vectb,w(g− sh)∥} ≤ ε
11. c′ ← c′ ×max{∥ f ∥, ∥g∥} (or multiply some positive integer)
12. c← c×max{∥ f ∥, ∥g∥} (or multiply some positive integer)
13. r ← r − 1
14. ε← ε × 10 (or multiply/add some positive integer)
15. output “not found”.

Example 13
Algorithm 12works for polynomialsf (x1, x2) andg(x1, x2) below as follows.

f (x1, x2) = 15336x2
1 − 3651x1x2 − 11673x1 − 1271x2

2 + 11618x2 − 15979,
g(x1, x2) = 23184x2

1 − 15094x1x2 + 53046x1 + 2425x2
2 − 19493x2 + 26112.

Communications of JSSAC Vol. 2 27

We assume that these polynomials have a priori errors on their3rd (42) and 4th (43) digits of
coefficients in the baseb = 4 representation (note:log4(max{∥ f ∥∞, ∥ g ∥∞}) ≈ 7.85). By the
algorithm, we reduce the lattice generated by the row vectors of the following matrix of size76×86
with cL̃ = 6986206386174202099andcE = 2671636.

L̃4,8(f ,g,0, cL̃, {2,3}, cE) =

1 0 0 0 0 0 6986206386174202099 139724...48404198· · · 0
0 1 0 0 0 0 0 0 · · · 0
0 0 1 0 0 0 0 0 · · · 0
0 0 0 1 0 0 0 −209586...22606297· · · 0
0 0 0 0 1 0 0 0 · · · 0
0 0 0 0 0 1 0 0 · · · 0
0 0 0 0 0 0−6986206386174202099 279448...96808396· · · 0
0 0 0 0 0 0 0 −69862...74202099· · · 0
0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 0 · · · 0
...
...
...
...
...
...

...
...
. . .

...
0 0 0 0 0 0 0 0 · · · 27944825544696808396

.

We found the following short vectors that are sorted by the norm of right columns.
313 −41 −213 512−71 322 0 0 0 0 −320596320 −85492352 0 0· · · 0
165 −21 −113 272−43 170 0 0 0 0 −1485429616−371357404 0 0· · · 0
295 −39 −203 480−73 302 0 0 0 0 1301086732 325939592 0 0· · · 0
...

...
...
...

...
...
...
...
...
...

...
...
...
...
. . .
...

 .
We construct the following matrix of size88 × 100 for the first short vector in the step9 with
cH̃ = 399729686425627882725andcE = 2181382.

H̃4,8(f ,g,0, cH̃ , t, s, {2,3}, cE) =

1 0 0 0 0 −119918...83648175· · · 0
0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · −799459372851255765450
0 0 0 0−399729686425627882725 159891...11530900· · · 0
0 0 0 0 0 −39972...27882725· · · 0
0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0
...
...
...
...

...
...
. . .

...
0 0 0 0 0 0 · · · 1598918745702511530900

.

We found the following short vectors that are sorted by the norm of right columns. We show only
short vectors having±1 on their first elements as noted just after Lemma7.

1 51 −31 72 0 0 0 0 0 −2181382 0 · · · 0
1 51 −27 72 0 0 0 0 0 −2181382 0 · · · 0
1 51 −29 72 0 0 0 0 0 −2181382 0 · · · 0
1 49 −31 72 0 0 0 0 −19632438−8725528−399729686425627882725· · · 0

 .

28 Communications of JSSAC Vol. 2

Hence, we get213x1+41x2−313and322x1−71x2+512as approximate cofactors,72x1−31x2+51
as an approximate GCD off (x1, x2) andg(x1, x2), andε4,8 =

√
38 ≈ 6.16 in the Euclidean norm.

Moreover, the perturbation polynomials are(3× 42 − 43)+ (−3× 42 − 2× 43)x2 and(−3× 42 − 3×
43)x1 + (2× 42 + 3× 43)x2

2. ▹

Example 14
Though the discussions above and Algorithm12 are only for the case of two polynomials, it is
easy to extend them to several polynomials, using the generalized subresultant mapping (see also
[25],[18]). We show some example of the case of three polynomials below as follows.

f (x1, x2) = 23112x2
1 − 6999x1x2 − 6117x1 − 1271x2

2 + 11730x2 − 15963,
g(x1, x2) = 2304x2

1 − 6104x1x2 + 38432x1 + 2201x2
2 − 19493x2 + 26224,

h(x1, x2) = −3744x2
1 + 24724x1x2 + 6060x1 − 9951x2

2 + 12700x2 + 6139.

We assume that these polynomials have a priori errors on their2nd (161) digits of coefficients in
the baseb = 16representation (note:log16(max{∥ f ∥∞, ∥g∥∞, ∥h∥∞}) ≈ 3.81). We construct a matrix
of size69× 89 which is similar toL̃b,w(f ,g, r, cL̃,E, cE) with cL̃ = 2816708953910864585and
cE = 2443811and found the following short vectors that are sorted by the norm of right columns.

−313 41 321−512 71 −32 −121 −321 52 0 0 −5354389901· · · 0
496 −64 −512 816−112 48 192 512−80 0 0 −2856815059· · · 0
−205 29 213−336 51 −16 −77 −213 36 0 0 −1886622092· · · 0
...

...
...

...
...

...
...

...
...
...
...

...
. . .
...

 .
For the first short vector found, corresponding to candidate three cofactors, we construct a matrix
of size58× 76 which is similar toH̃b,w(f ,g, r, cH̃ , t, s,E, cE) with cH̃ = 39365206313183407and
cE = 1629208and found the following short vectors that are sorted by the norm of right columns.
−1 51 −31 72 0 0 0 0 0 0 6516832 0 0 0 0 0 0 0−4887624 0 0 0 0 0 0 0 0 0· · · 0
−1 51 −31 72 0 0 0 0 0 0 6516832 0 0 0 0 0 0 0−4887624 0 0 0 0 0 0 0 0 0· · · 0
−1 51 −31 72 0 0 0 0 0 0 6516832 0 0 0 0 0 0 0−4887624 0 0 0 0 0 0 0 0 0· · · 0
...
...

...
...
...
...
...
...
...
...

...
...
...
...
...
...
...
...

...
...
...
...
...
...
...
...
...
...
. . .
...

 .
Hence, we get321x1 + 41x2 − 313, 32x1 − 71x2 + 512and−52x1 + 321x2 + 121as approximate
cofactors,72x1−31x2+51as an approximate GCD off (x1, x2), g(x1, x2) andh(x1, x2), andε16,4 =√

65≈ 8.06in the Euclidean norm. Moreover, the perturbation polynomials are3×161x1−4×161x2,
−4× 161x1 + 7× 161 and5× 161x2 − 2× 161. ▹

4 Remarks

To see the efficiency of Algorithm12, we have generated several sets of 100 pairs of polynomials:
A pair of bivariate polynomials of total degree randomly chosen from [2,6], having their GCD
of total degree randomly chosen from [1,3], coefficients of their factors randomly chosen from
[−100,100] and added noise bivariate polynomials of the same total degree, whose coefficients are
randomly chosen from [−9,9] × 10k but 0 atα probability, for randomly chosen erroneous digitk
within the coefficient size. For example, the following pair of polynomials is one of them (α = 0.0

Communications of JSSAC Vol. 2 29

andk = 4).

(−85x3
1 + 21x2x2

1 + 88x2
1 + 18x2

2x1 − 99x2x1 + 17x1 + 95x3
2 − 49x2

2 − 89x2 − 96)
×(46x1 + 92x2 + 47)+ (8× 104x4

1 + 1× 104x2x3
1 − 1× 104x3

1 + 4× 104x2x2
1

−7× 104x2
1 − 6× 104x3

2x1 + 8× 104x2
2x1 − 6× 104x2x1 − 8× 104x1

−5× 104x4
2 − 7× 104x3

2 + 7× 104x2
2 + 7× 104x2 − 6× 104),

(−85x3
1 + 21x2x2

1 + 88x2
1 + 18x2

2x1 − 99x2x1 + 17x1 + 95x3
2 − 49x2

2 − 89x2 − 96)
×(−80x1 + 83x2 + 62)+ (−8× 104x4

1 + 7× 104x2x3
1 + 5× 104x3

1 + 9× 104x2
2x2

1
−6× 104x2x2

1 − 5× 104x2
1 + 8× 104x3

2x1 + 4× 104x2
2x1 − 9× 104x2x1

−4× 104x1 + 5× 104x4
2 − 2× 104x3

2 + 6× 104x2
2 − 9× 104x2).

We have computed their approximate GCDs by the algorithm withε = 10 in the step1, r = 0 in
the step2 andcL̃ = cH̃ = 1010 andcE = 105 in the steps3 and7. Note that all the experiments have
been computed by our preliminary implementation on Mathematica 8.0, and we use the max norm
for polynomials. Table1 shows the results where “#success” denotes the number of pairs for which
we got the expected digits-wise approximate polynomial GCD over integers and “#failure” denotes
otherwise. According to the result, our algorithm works well for most of pairs of polynomials.
However, the computation time is not good since the time-complexity of the lattice basis reduction
is heavily depending on the number of bases that is the number of rows of matrices in our algorithm.
Therefore, our algorithm works well but any faster algorithm is required to be used in the practical
situation.

probabilityα 0.75 0.5 0.0
1st set 2nd set 1st set 2nd set 1st set 2nd set

#success:#failure 99:1 99:1 93:7 96:4 97:3 91:9

Table 1:The result of our experiments

Although we consider about only polynomials over integers in this paper, the digits-wise repre-
sentation can be extended to polynomials over reals or complexes. For example, we can construct
the Sylvester matrix of the given polynomials over reals in the digits-wise representation: dividing
mantissae of coefficients into several elements if the given polynomials do not have both of small
and large exponential parts. This may help us to treat erroneous coefficients having errors on only
higher bits and should be studied as a further work.

The preliminary implementation on Mathematica 8.0, of our algorithm introduced in this paper
with some examples can be found at the following URL:http://wwwmain.h.kobe-u.ac.jp/
~nagasaka/research/snap/snc2011plus.nb.

Acknowledgments

The author would like to thank Prof. Kaltofen for having the personal conversation on approximate
polynomial GCD over integers which is very helpful for the ideal of digit-wise lattice. Moreover,
this work was supported in part by Japanese Ministry of Education, Culture, Sports, Science and
Technology under Grant-in-Aid for Young Scientists, MEXT KAKENHI (22700011).

References

[1] L. Babai. On lovász’ lattice reduction and the nearest lattice point problem.Combinatorica,
6:1–13, 1986.

30 Communications of JSSAC Vol. 2

[2] K. Batselier, P. Dreesen, and B. De Moor. A geometrical approach to finding multivariate
approximate LCMs and GCDs.Linear Algebra Appl., 438(9):3618–3628, 2013.

[3] G. Chèze, A. Galligo, B. Mourrain, and J.-C. Yakoubsohn. A subdivision method for com-
puting nearest gcd with certification.Theoret. Comput. Sci., 412(35):4493–4503, 2011.

[4] D. Christou and M. Mitrouli. Estimation of the greatest common divisor of many polynomials
using hybrid computations performed by the ERES method.Appl. Numer. Anal. Comput.
Math., 2(3):293–305, 2005.

[5] R. M. Corless, S. M. Watt, and L. Zhi.QR factoring to compute the GCD of univariate
approximate polynomials.IEEE Trans. Signal Process., 52(12):3394–3402, 2004.

[6] G. M. Diaz-Toca and L. Gonzalez-Vega. Computing greatest common divisors and square-
free decompositions through matrix methods: the parametric and approximate cases.Linear
Algebra Appl., 412(2-3):222–246, 2006.

[7] M. Elkadi, A. Galligo, and T. L. Ba. Approximate GCD of several univariate polynomials
with small degree perturbations.J. Symbolic Comput., 47(4):410–421, 2012.

[8] I. Z. Emiris, A. Galligo, and H. Lombardi. Numerical univariate polynomial GCD. InThe
mathematics of numerical analysis (Park City, UT, 1995), volume 32 ofLectures in Appl.
Math., pages 323–343. Amer. Math. Soc., Providence, RI, 1996.

[9] I. Z. Emiris, A. Galligo, and H. Lombardi. Certified approximate univariate GCDs.J. Pure
Appl. Algebra, 117/118:229–251, 1997. Algorithms for algebra (Eindhoven, 1996).

[10] S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi. Approximate factorization of multivariate
polynomials via differential equations. InISSAC 2004, pages 167–174. ACM, New York,
2004.

[11] N. Howgrave-Graham. Approximate integer common divisors. InCryptography and lattices
(Providence, RI, 2001), volume 2146 ofLecture Notes in Comput. Sci., pages 51–66. Springer,
Berlin, 2001.

[12] N. Karcanias, S. Fatouros, M. Mitrouli, and G. H. Halikias. Approximate greatest common
divisor of many polynomials, generalised resultants, and strength of approximation.Comput.
Math. Appl., 51(12):1817–1830, 2006.

[13] N. K. Karmarkar and Y. N. Lakshman. On approximate GCDs of univariate polynomials.J.
Symbolic Comput., 26(6):653–666, 1998. Symbolic numeric algebra for polynomials.

[14] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coeffi-
cients.Math. Ann., 261(4):515–534, 1982.

[15] T. Y. Li and Z. Zeng. A rank-revealing method with updating, downdating, and applications.
SIAM J. Matrix Anal. Appl., 26(4):918–946 (electronic), 2005.

[16] M. Mitrouli and N. Karcanias. Computation of the GCD of polynomials using Gaussian
transformations and shifting.Internat. J. Control, 58(1):211–228, 1993.

[17] K. Nagasaka. Approximate polynomial gcd over integers.ACM Communications in Com-
puter Algebra, 42(3):124–126, 2008. (ISSAC 2008 poster session).

Communications of JSSAC Vol. 2 31

[18] K. Nagasaka. Approximate polynomial gcd over integers.J. Symbolic Comput., 46(12):1306–
1317, 2011.

[19] K. Nagasaka. An improvement in the lattice construction process of approximate polynomial
gcd over integers. InProceedings of Symbolic-Numeric Computation (SNC2011), pages 63–
64. 2011. (extended abstract).

[20] K. Nagasaka and T. Masui. Extended qrgcd algorithm. In V. Gerdt, W. Koepf, E. Mayr, and
E. Vorozhtsov, editors,Computer Algebra in Scientific Computing, volume 8136 ofLecture
Notes in Computer Science, pages 257–272. Springer International Publishing, 2013.

[21] M. Ochi, M. Noda, and T. Sasaki. Approximate greatest common divisor of multivariate
polynomials and its application to ill-conditioned systems of algebraic equations.J. Inform.
Process., 14(3):292–300, 1991.

[22] V. Y. Pan. Approximate polynomial gcds, Padé approximation, polynomial zeros and bipartite
graphs. InProceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(San Francisco, CA, 1998), pages 68–77, New York, 1998. ACM.

[23] V. Y. Pan. Computation of approximate polynomial GCDs and an extension.Inform. and
Comput., 167(2):71–85, 2001.

[24] C. Rössner and J.-P. Seifert. The complexity of approximate optima for greatest common
divisor computations. InAlgorithmic number theory (Talence, 1996), volume 1122 ofLecture
Notes in Comput. Sci., pages 307–322. Springer, Berlin, 1996.

[25] D. Rupprecht. An algorithm for computing certified approximate GCD ofn univariate poly-
nomials. J. Pure Appl. Algebra, 139(1-3):255–284, 1999. Effective methods in algebraic
geometry (Saint-Malo, 1998).

[26] T. Sasaki and M. Noda. Approximate square-free decomposition and root-finding of ill-
conditioned algebraic equations.J. Inform. Process., 12(2):159–168, 1989.

[27] A. Schönhage. Quasi-gcd computations.J. Complexity, 1(1):118–137, 1985.

[28] J. von zur Gathen, M. Mignotte, and I. E. Shparlinski. Approximate polynomial gcd: Small
degree and small height perturbations.J. Symbolic Comput., 45(8):879–886, 2010.

[29] J. von zur Gathen and I. E. Shparlinski. Approximate polynomial gcd: small degree and small
height perturbations. InLATIN 2008: Theoretical informatics, volume 4957 ofLecture Notes
in Comput. Sci., pages 276–283. Springer, Berlin, 2008.

[30] C. J. Zarowski, X. Ma, and F. W. Fairman. QR-factorization method for computing the great-
est common divisor of polynomials with inexact coefficients. IEEE Trans. Signal Process.,
48(11):3042–3051, 2000.

[31] Z. Zeng and B. H. Dayton. The approximate GCD of inexact polynomials. II. A multivariate
algorithm. InISSAC 2004, pages 320–327. ACM, New York, 2004.

[32] L. Zhi. Displacement structure in computing approximate GCD of univariate polynomials.
In Computer mathematics, volume 10 ofLecture Notes Ser. Comput., pages 288–298. World
Sci. Publ., River Edge, NJ, 2003.

32 Communications of JSSAC Vol. 2

[33] L. Zhi and M. Noda. Approximate GCD of multivariate polynomials.Sūrikaisekikenkȳusho
Kōkȳuroku, (1138):64–76, 2000. Research on the theory and applications of computer algebra
(Japanese) (Kyoto, 1999).

[34] L. H. Zhi and M. Noda. Approximate GCD of multivariate polynomials. InComputer mathe-
matics (Chiang Mai, 2000), volume 8 ofLecture Notes Ser. Comput., pages 9–18. World Sci.
Publ., River Edge, NJ, 2000.

Communications of JSSAC (2016)
Vol. 2, pp. 33 – 42

Practice of Drawing Graphs of Implicit Functions of
Three Variables

Noriko Hyodo
Salesian Polytechnic

Yuji Kondoh
National Institute of Technology, Kagawa College

Hirokazu Murao
The University of Electro-Communications

Tomokatsu Saito
AlphaOmega Inc.

Tadashi Takahashi
Konan University

(Received 31/Oct/2014 Accepted 16/Feb/2015)

Abstract

We have long been working on developing algorithms for drawing graphs of implicit functions.
In this paper, we investigate methods for trivariate cases as a simple extension of the existing
methods for bivariate cases. The basic strategy of our methods consists of division of the 3D
space in the display area into a contiguous sequence of tiny cubes, and the check for every cube
of the existence of the solutions to the polynomial equation defining an implicit function. The
method itself is characterized by the exact treatment with mathematical preciseness of numeric
calculation and formula manipulation provided by computer algebra system. The underlying
mathematics used in our most precise algorithm for bivariate cases cannot be extended direct to
trivariate cases, and there remains a small chance even for our current most rigorous algorithm
to miss the detection of a closed curve of solutions if it is isolated inside a cube. We explain
how we can simply extend our method to trivariate cases, and investigate the situations of the
solution graphs that each algorithm may miss. We also show some sample results obtained by
our several experimental implementations.

1 Introduction

There have been developed many mathematical software systems which support the functionality of
graph drawing. Visualization is useful for roughly grasping the behavior of mathematical functions.
It is important with visualization to present the overall behavior exactly and also not to lose critical
nature at some distinct points. Despite this, how to establish an accurate drawing method or the
preciseness of drawing methods are rarely discussed. Drawing the figure of the real zeros of the
equation of a multivariate polynomial, in other words, the graph of a real algebraic function, is
an old problem hard to solve[1]. In general, the problem to obtain the real solution curves of a
polynomial exactly still be very difficult, because they may have isolated points or curves. Actually,

c⃝ 2016 Japan Society for Symbolic and Algebraic Computation

34 Communications of JSSAC Vol. 2

not a few existing software systems may fail without any notice. In this paper, we treat polynomial
equations with rational coefficients, and describe a method to plot the solution curves precisely.

The computer algebra system Risa/Asir[2] equips with a function, calledifplot, for plotting the
curves of implicit functions defined by bivariate polynomials. The method of plotting is based on a
principle for a graph to be mathematically precise, and on this principle, an algorithm is developed
for obtaining the solution curves. The effectiveness of the proposed principle and the practicality of
the algorithms has been demonstrated by examples. More concretely, the method makes, internally,
use of an evaluation function of a square region to tell whether it contains any solution(s) of an
implicit function. We call this evaluation functioncharacter function (or character for short).
Every region covering the display area is checked by a character function. Character function can
be implemented in various ways, depending on the requirement for efficiency and mathematical
correctness in practice. The ultimate condition expected for character is to guarantee the existence
or non-existence of solutions. As described in [4] and implemented withifplot, such an ultimate
character can be realized for 2D cases by making use of Gröbner basis calculation. This method
cannot be directly extended to 3D cases.

Nowadays, various types of devices for 3D plotting are available, such as 3D display terminals
and 3D printers, and they are becoming very common in recent years. Furthermore, processors
widely used have obtained excessive high-performance, and it is expected that a huge amount of
calculations required for 3D graphics can be processed with reasonable efficiency by utilizing the
performance. With this recognition in mind, we shall treat implicit functions of three variables in
our plotting context with Risa/Asir, and we investigate our method toward the 3D extension in this
paper.

2 Fundamentals

2.1 Basic Concepts and Principle

Drawing the graph of mathematical functions is commonly recognized as an easy problem, despite
the difficulty in mathematical precise treatment. Every existing display device of any kind consists
of a large amount of “spots”, each of which has finite area or volume determined by the resolution.
A curve or a graph is usually drawn, regardless of connected or non-connected, as a set of spots,
thus, having some area or volume, although a point or a curve cannot have a width or thickness in
mathematical senses. Spot is often termed aspixel in 2D cases andvoxel in 3D cases. Then, in
what sense and to what extent the drawn figure is precise? It is difficult to give an answer to this
question in a mathematical well-defined manner. Notice that a graph shows only a sketch of the true
mathematical curve. By employing algebraic computation, however, we can give a mathematically
definite meaning of the drawn figure of the solution curves. In [5, 4], the authors described, starting
from the definitions of mathematical basic notions, the abstract meaning of plotting, and how we
can improve the mathematical preciseness in the computing methods actually used in practice, in
the context of plotting in the 2D space. As a preparation for the 3D-extension, we give a brief
review of the previous works by quoting some of the descriptions in [4] in the following.

Let D be a connected compact subset ofRn, and let f : D→ R be a function defined onD and
continuous. As in [5], we propose the following principle for plotting the solutions to the equation
f = 0. We shall use acell as a terminology of the generalization of spot. The required properties
for cells will be explained later.

Plotting principle 1. A cell has ann-dimensional volume.

Communications of JSSAC Vol. 2 35

2. A cell is plotted if it has a point inRn in common with the solutions, and any non-plotted
cell has no common point with the solutions.

Here,plottedmeans being displayed with a foreground color on the displaying device.

A plotting algorithm that satisfies the above principle is not easy to develop in general. The
difficulty lies in constructing effective procedure to decide whether a solution exists or not in a
given area. Required functionalities for an algorithms are outlined below.

• division of the domain of plotting area into a family of small sets of points, calledcells.

• method to determine whether the given equation has isolated singular points, and if it does, the
location of the cells in which the isolated singular points exist.

• method to determine whether a specified cell has any solution on its boundary.

• method to determine whether a specified cell contains any solutions which have no intersections
on the boundary, i.e., entirely contained closed curve/surface.

2.2 Mathematical Description of Plotting

We describe the meaning of plotting with mathematical preciseness. On the above principle, plot-
ting the solution off = 0 is to decide for every cell defined onD whether or not it intersects the
solution set{ (x1, x2, . . . , xn) ∈ D | f (x1, x2, . . . , xn) = 0 }. Let { C j | j = 1, ...,m} be a family ofm
subsets ofD.

Definition 1 We call{ C j | j = 1, ...,m} a family of cells, or resolution, defined on D if everyC j

is a connected closed subset of D, D=
∪m

i= j C j , andC j
ı∩Ck

ı = ∅ for j , k whereC j
ı andCk

ı

denote sets of all interior points ofC j andCk respectively.

Our main concern in plotting the zeros of a function is to compute the following function called a
character.

Definition 2 We call a functionχ : C j → {0,1} a characterof f with resolution{C j} defined on D
if χ(C j) = 0 implies f(x1, x2, . . . , xn) , 0 for every point(x1, x2, . . . , xn) in C j .

A character functionχ guarantees that ifχ(C j) = 0 then the given functionf never vanish all over
the cellC j . It does not guarantee the existence of zeros off in the cellC j whenχ(C j) = 1, however.
The condition for character is not sufficiently tight to be used in practice for plotting the zeros of a
function, in general. We propose a strong property of character as follows.

Definition 3 A characterχ of f with resolution{C j} on D isfaithful if χ(C j) = 1 implies that there
exists a point(x1, x2, . . . , xn) in C j such that f(x1, x2, . . . , xn) = 0.

The faithful character provides desired functionality for exact plotting. For general bivariate func-
tions, there are no known algorithms to compute faithful character, except for the one which applies
to bivariate polynomials with rational coefficients [3].

We consider how we can implement a character function concretely. Hereinafter, we limit our
concern to such cases that the family{C j } is composed of rectangular grid points, and we letCk

be{(x1, ..., xn) | ak,l ≤ xl ≤ bk,l , 1 ≤ l ≤ n, ak,l ∈ Q,bk,l ∈ Q}. Let Ik,l denote an interval [ak,l , bk,l].

36 Communications of JSSAC Vol. 2

Interval character. The function that checks if zero is contained in the interval valuef (Ik,1, ..., Ik,n)
satisfies the condition for character, but cannot be faithful in most cases. This function is called
an interval character.

In general, it is quite difficult to give a concrete computing method for a character function, even
without requiring the faithfulness. We let ourselves get pragmatic. We focus on the detection of
zeros of a given polynomial, and introduce a notion of functions, calledweak character, which
are not necessarily character (in the sense of Definition2) but satisfy the property of Definition3.
Also, in the following, we use the same term “character” referring to the functions used for the
determination of cell plotting.

2.3 Plotting in 2D-space

We describe our basic ideas used for 2D cases, i.e., for plotting zeros of a bivariate polynomial
f (x, y). Without loss of generality, we assumef is square-free for simplicity.

According to its definition, for a specified cell, character must detect and must not miss the
existence of any solution to the equationf (x, y) = 0 in the cell. Consider the case when a certain
cell contains the solution off = 0, and consider how to construct a function to determine the
existence of any solutions. We consider what could likely to happen with the cells containing the
zeros, and consider how it can be detected. In most cases, the curve would intersect with any of
the edges of the cell, and the existence of any solution on a line segment can be easily checked,
e.g., using the signs of the both endpoints or Sturm’s theorem. These observations lead to the
development of a series of character functions actually used in our implementation ofifplot for
2D cases as follows.

Sign (weak) character. Consider a certain cellCk containing the solutions tof = 0. Then, it
is likely that the signs off are not all equal at four corners ofCk, i.e., (ak,1,ak,2), (bk,1,ak,2),
(ak,1,bk,2) and (bk,1, bk,2). Our simplest character function, called sign (weak) character, com-
putes and checks those signs.
Even if the curvef = 0 has any common point with any of the edges, this character may
have a chance to miss their existence as in the case that the curve intersects with one edge an
even number of times by taking their multiplicities into account. This type of omission can be
avoided simply by computing Sturm’s sequence.

Boundary (weak) character. If a certain cellCk contains the zeros off , then it is very likely that
f has its zeros on any of the four edges. Boundary (weak) character is designed to detect the
existence of the zeros on the edges of a cell. According to Sturm’s theorem, we can determine
the number of zeros of a univariate polynomial existing in a specified interval, and we shall
use this theorem to detect the existence of zeros. More concretely, for each cellCk, we check
whether at least one of univariate polynomialsf (ak,1, y), f (bk,1, y), f (x,ak,2) and f (x,bk,2) have
zeros in the intervalsIk,1 for x andIk,2 for y. In practice, we may recursively apply the bisection
method and the detection by using Sturm’s theorem to each of full line segments of the grid in
the display area, until the interval of the bisected segments gets smaller than the resolution or
non-existence of zeros in the segment is confirmed, as in [6].

Both of the above two characters will fail to detect the existence of zeros in a cell if all the zeros
are of singular points or closed curves completely isolated inside the cell.

Implementation approach to a faithful character. We assume thatf is not only square-free but
irreducible. Singular points, if exist, can be obtained as solutions to the zero-dimensional sys-
tem of polynomial equationsf = ∂ f /∂x = ∂ f /∂y = 0. Also, on every closed curve, there must

Communications of JSSAC Vol. 2 37

exist finitely many points that satisfy the system of equations∂ f /∂x = 0 or∂ f /∂y = 0. There-
fore, we can determine the locations of any cells containing isolated zeros by computing the
solutions via the Gröbner basis of the system with sufficient accuracy that makes the precision
of the locations smaller than the resolution.

This way of algebraic treatment plus the previous method for the detection on boundary can
establish a faithful character.

3 Extension for Plotting in 3D-space

We now consider the case with three variables, i.e., to plot zeros of trivariate implicit functions
f (x, y, z) = 0, in 3D space. Most of the arguments and the algorithms for 3D cases parallel those
of 2D cases. Our overall strategies and the algorithms derived from the intermediate value theorem
and Sturm’s theorem are made so simple as the mathematical correctness and the accuracy of
numeric calculation may rely on computer algebraic computation, and can be easily expanded
to 3D cases. However, there arises a difficult problem in 3D cases, if there exists an isolated
closed surface inside a voxel and we need to identify the precise location of the voxel. The rest
of the section is devoted to investigating the algorithms using various characters, towards the 3D-
extension, to some details from the practical point of view.

3.1 Character Functions for Graphs in 3D-space

The basic strategy of our algorithms is to check the existence of solutions against all cells or voxels
in the drawing area, using character function, and the algorithms differ in how character determines
the (non-)existence of solutions. We assume that all numeric calculations are done exactly or with
sufficient accuracy.

3.2 Sign (Weak) Character

The simplest algorithm uses sign (weak) character. Based on the intermediate value theorem, sign
(weak) character determines the existence of zero from the signs off (x, y, z) at the corners of a
voxel. The procedure of the algorithm using sign (weak) character consists of the following steps.

1. fix grids defining a set of voxels and fix the coordinates of all grid points in a display area

2. evaluatef (x, y, z) at all the grid points, and determine the zeroness or the signs of the values

3. if the values at all corner points of one voxel are non-zero and have the same sign, the voxel is
regarded containing no zeros.

This algorithm has such merits as

• required calculations can be done efficiently, and especially, can be performed in parallel, and

• it can be applied not only to algebraic equations but any continuous functions.

Notice that the algorithm is valid if the function to plot behaves gently, i.e., the value of function
changes slowly in the range of the coordinates of a single voxel. On the other hand, the algorithm
may miss the existence of zeros in such cases as the solution exists as an isolated singular point
in a voxel, the solution curve/surface in a voxel is completely isolated or contained in a voxel, the
solution curve/surface in a voxel is closed and its outward extension to the neighboring voxel, if
any, circumvent the corner points, and so on.

38 Communications of JSSAC Vol. 2

3.3 Boundary Character

Boundary character is designed to detect the existence of solutions on the boundary edge or face.
In 2D cases, Sturm’s theorem can be used to detect the solution on the edge, a boundary of cell [3].
The boundary of each voxel consists of six faces of a cube. If a voxel contains any solution, the
solution surface/curve is very likely to intersect with at least one of the six faces of the voxel cube.
Every voxel face is a grid square of some grid plane. We consider the intersection curve(s)/point(s)
of the surface/curve and each grid plane. On each grid plane, we consider the polynomialf (x, y, z),
i.e., the bivariate polynomialf (x, y, z) obtained by the substitution corresponding to the plane,
and we determine a set of squares of the plane containing its zeros. For this determination, we
can use our method for 2D cases, and especially for completeness, we have only to use faithful
character algorithm. Notice that faithful character for 2D cases can determine the existence or
non-existence of solutions in a cell exactly. Therefore, boundary character for 3D cases can never
miss the existence of a solution as long as the surface/curve has a point in common with any of the
boundaries of voxel. The only case that this algorithm may miss is those when the graph of the
solution is completely isolated inside a voxel. Treatment for those cases will be considered next.

3.4 Faithful Character

The role of character function is ideally the exact determination of the existence of solutions
in a specified one of regions, cells or voxels, equally divided by grids. We want detect even
those 3D cases when the curve/surface is isolated completely inside a single voxel. The isolated
curve/surface must be closed, and as in 2D cases, the condition satisfied other thanf = 0 differs
depending on the shape of the curve/surface. If the isolated curve/surface is a single point, it is
singular at the point and therefore, the following must be satisfied at the point:

∂ f
∂x
=
∂ f
∂y
=
∂ f
∂z
= 0. (1)

In the case of closed surface, there always exists a point at which the tangent is parallel to the axis
of x, y or z, sayx afterwards, and then, the partial derivative off in that direction must be equal to
0 at the point. Usually, it is expected that there exist only a finite number of such points, in which

Fig. 1: Example: a closed surface completely isolated inside a voxel.

case the ideal< f , ∂ f /∂x > is zero-dimensional and the solutions of the polynomial system of the
ideal determine the voxel position containing the surface. The above discussion can be summarized
as follows.

1. Taking the direction ofx-axis as one direction, we compute the Gröbner basis of polynomials
f and∂ f /∂x.

Communications of JSSAC Vol. 2 39

2. If the ideal turned out to be zero-dimensional, solve the polynomial system to obtain its zeros.

This process can always detect a single point of the graph component isolated inside a single voxel,
and is very likely to detect a closed surface inside a single voxel.

Fig. 2: Example difficult to detect: a closed curve completely isolated inside a voxel.

Very special is the case of closed curves, where the sign off does not change around the curve,
and therefore the condition (1) is satisfied on every point of the curve. This means that the ideal
obtained by computing the Gröbner basis off and some of the partial derivatives off w.r.t. x, y
andz is of positive dimension, and the method for detection mentioned above cannot be used. As
a very simple example of this, we give the following equation

f (x, y, z) = (x2 + y2 + z2 − 1)
2
+ x2 = 0

representing the unit circle of the intersection of a sphere and a plane, and we assume the voxel
has such a wide range that the circle is completely contained in a single voxel. The Gröbner basis
will give a set of polynomials of the plane and the circle. In such rare and simple cases of closed
curves, the location of the voxel containing a closed curve can be easily determined by some means,
however, in general, more advanced algorithm as cylindrical algebraic decomposition(CAD) will
be necessary. Further investigation is left for future study.

4 Empirical Study

As described in the previous section, it is difficult to guarantee the mathematical preciseness in plot-
ting trivariate implicit functions, and even with our most precise algorithm using faithful character,
there remains a chance to miss a closed curve complete isolated inside a single voxel. However,
from a practical point of view, there may be a chance that such a tiny graphical component need
not be drawn because it is not visible, and if being very casual is allowed, we may say that such
a tiny component does not affect on the total appearance in most cases. We therefore, being very
pragmatic, started to implement the 3D-extension of our algorithm using Risa/Asir for empirical
study. In what follows, we report a part of our study, and show some examples.

Using Risa/Asir language The user language of Risa/Asir is equipped with a function to plot a
given set of coordinate data, in order to facilitate experimentation of drawing method. Our first
attempt was done by using this facility, and the algorithm of boundary character was implemented.
Figures3 and4 are the sample output of this implementation. The defining polynomials used are
as follows:

f (x, y, z) = (x2 + y2 + z2)
2 − 10(x2 + y2) + 6z2 − 10= 0 (2)

f (x, y, z) = (x2 + y2 + z2 − 1)
2
+ (x− 1/32)2 = 0 (3)

40 Communications of JSSAC Vol. 2

Fig. 3: Drawing example of Eq. (2) Fig. 4: Drawing example of Eq. (3)

Fig.3 represents the graph of Eq. (2) in 128× 128× 128 grid, and Fig.4 does the graph of Eq. (3)
in 64× 64× 64 grid. These examples indicate that boundary character is sufficiently useful for this
level of preciseness.

Using OpenGL for Drawing Graphical capability provided by the user language of Risa/Asir is
quite limited; even standard capabilities such as for scaling or for rotation are not available. Also,
the drawing speed is as fast as being tolerable for one shot drawing, but is quite slow by today’s
graphics standard. To remedy these defects, we developed a new drawing function which makes
use of OpenGL. OpenGL provides rich functions for graphics manipulation, which will ease the
development of standard graphics capabilities. We still use the implementation in Risa/Asir user
language for calculations with character functions, and we simply replace the drawing part with our
new implementation using OpenGL. Two types of character functions are implemented, boundary
character and sign (weak) character. We use the boundary character in the following examples.

Figures5, 6 and7 are the examples drawn by our new implementation in 128× 128× 128 grid,
where the implicit functions used are defined respectively by the following equations:

f (x, y, z) = 16(x2 + y2 + z2)
2 − 40(x2 + y2) + 24z2 − 9 = 0, (4)

f (x, y, z) = (x2 + y2 + 2z2 − 1)
3 − x2y3 = 0, (5)

f (x, y, z) = (x2 + y2 + 2z2 − 1)
2
+ (x− 1/32)2 = 0. (6)

With our new implementation, remarkable speedup has been attained, and also, we recognized
again that boundary character is sufficient for practical use. Additionally, we should mention that
the use of OpenGL, rather than the direct use of X as in the current implementation in Risa/Asir,
makes it easier to port to a wide variety of platforms and to develop various graphical capabilities.
The experience and the result of our empirical study strongly support that the hard problem of
drawing 3D graphs of trivariate implicit functions can be treated with sufficient preciseness and
reasonable amount of computing time, and that our 3D-extended method is useful in practice.

Communications of JSSAC Vol. 2 41

Fig. 5: Drawing example of Eq. (4) by OpenGLFig. 6: Drawing example of Eq. (5) by OpenGL

Fig. 7: Drawing example of Eq. (6) by OpenGL

5 Conclusion

In this paper, we investigated how we can draw 3D graphs of trivariate implicit functions exactly,
and reported our empirical study with some experimental implementation. The methods used and
implemented are the straightforward 3D-extension of the existing methods for 2D cases, each of
which uses a different type of character function. Our voxel-based algorithm checks every voxel
in the display area whether it contains the zero of the implicit function by character function. For
each type of character function, we explained what situation of point/curve/surface may have a
chance to be not detected. Even faithful character, our sharpest character, may miss a closed curve
isolated inside a voxel, in which case the existence of such curve itself can be detected but its
(voxel) location cannot be identified by our simple algorithm.

Finally, we would like to point out the similarity and the affinity of our voxel-based algorithm
with 3D printers. The use of voxel as a smallest of plotting will be convenient if 3D printers
are targeted as an output device, because a pixel on printing device can be treated as one voxel.
Some typical type of 3D printers construct printed object by stacking layers of material, and the
processing structure of repetition of the voxel-based algorithm is same as the layer-by-layer printing
process and can be applied to the process. Notice that actual printing has such a problem as how to
add supports for points or parts of object floating in the air.

As explained before, our current algorithm is still incomplete. Investigation of appropriate

42 Communications of JSSAC Vol. 2

methods for detecting a closed curve isolated inside a single voxel and development of mathemati-
cally correct and complete algorithm are left for further study.

References

[1] R. Fateman. Honest plotting, global extrema, and interval arithmetic. In Wang [7], pages
216–223.

[2] M. Noro and T. Takeshima. Risa/Asir — a computer algebra system. In Wang [7], pages
387–396.

[3] T. Saito. An extension of Sturm’s theorem to two dimensions.Proceedings of the Japan
Academy, Ser. A Mathematical Sciences, 73(1):18–19, 1997.

[4] T. Saito.Displaying Zeros of Mathematical Equations. PhD thesis, 2000. (in Japanese).

[5] T. Saito, Y. Kondoh, Y. Miyoshi, and T. Takeshima. Displaying real solution of mathematical
equations.Journal of JSSAC, 6(2):2–21, 1998. (in Japanese).

[6] T. Saito, T. Takeshima, and T. Hilano.Practice and Application of Gröbner Basis Computation.
University of Tokyo Press, 2003. (in Japanese).

[7] P. S. Wang, editor.Proceedings of ISSAC ’92, Berkeley, CA, July 27–29 1992.

Editorial board
Editor-in-Chief Hiroyuki Sawada
Associate Editor-in-Chief Akira Terui
Editors: Ryūta Hashimoto

Satoshi Yamashita

International Advisory board
Bruno Buchberger
Hoon Hong
Hyungju Park
Dongming Wang

Communications ofJssac Vol. 2 2016
Publisher Japan Society for Symbolic and Algebraic Computation

Office zip 124–0011

Katsushika-ku Yotsugi 1–26–2 AlphaOmega Inc.

	Contents
	Nakano
	Introduction
	Boolean Groebner Bases
	The Inoue algorithm and the Inoue invariants
	Formulation of puzzles of Sudoku type by a system of Boolean polynomial equations
	Main results

	Nagasaka
	Introduction
	The problem to be solved

	Approximate GCD by Lattice Basis Reduction
	Digits-wise Lattice
	Definitions of Digits-wise Representation
	Algorithm in Digits-wise Representation

	Remarks

	Hyodo
	Introduction
	Fundamentals
	Basic Concepts and Principle
	Mathematical Description of Plotting
	Plotting in 2D-space

	Extension for Plotting in 3D-space
	Character Functions for Graphs in 3D-space
	Sign (Weak) Character
	Boundary Character
	Faithful Character

	Empirical Study
	Conclusion

